- jede reelle Zahl besitzt (im wesentlichen)
genau einen Kettenbruch-Entwicklung
- für jede rationale Zahl ist der Kettenbruch endlich
- ,,im wesentlichen``: falls endlich, dann letzte Stelle > 1.
- jede quadratische Irrationalität
(nicht rationale Nullstelle eines Polynoms zweiten Grades)
besitzt einen periodischen Kettenbruch
(Periode exakt ausrechnen? Algebraische Zahlen!)
Aufgabe: (mupad: contfrac) für und/oder e
oder
exp(2), exp(1/2),...
Gesetzmäßigkeiten raten ...und beweisen!
-- Vgl. HAKMEM http://www.inwap.com/pdp10/hbaker/hakmem/cf.html
Johannes Waldmann
2007-01-30