Matrix-Multiplikation nach Strassen

$\displaystyle \left(\vphantom{\begin{array}{cc}a&b\  c&d \end{array}}\right.$$\displaystyle \begin{array}{cc}a&b\  c&d \end{array}$$\displaystyle \left.\vphantom{\begin{array}{cc}a&b\  c&d \end{array}}\right)$ . $\displaystyle \left(\vphantom{\begin{array}{cc}e&f\  g&h \end{array}}\right.$$\displaystyle \begin{array}{cc}e&f\  g&h \end{array}$$\displaystyle \left.\vphantom{\begin{array}{cc}e&f\  g&h \end{array}}\right)$ = $\displaystyle \left(\vphantom{\begin{array}{cc}ae+bg&af+bh\  ce+dg&cf+dh \end{array}}\right.$$\displaystyle \begin{array}{cc}ae+bg&af+bh\  ce+dg&cf+dh \end{array}$$\displaystyle \left.\vphantom{\begin{array}{cc}ae+bg&af+bh\  ce+dg&cf+dh \end{array}}\right)$

8 Mult, 4 Add.

Es genügen 7 Multiplikationen (welche?) und mehrere Additionen/Subtraktionen (welche?)

Dann T(n) = 7*T(n/2) + c . n

http://mathworld.wolfram.com/StrassenFormulas.html



Johannes Waldmann 2007-01-30