
Automatic Termination

Johannes Waldmann, HTWK Leipzig

Inference Seminar, FSU Jena, Oct. 2023

Johannes Waldmann, HTWK Leipzig Automatic Termination 1 / 19

Termination: Definition
▶ string rewrite system (a.k.a. Turing machine, Markov

algorithm, type 0 grammar) is set of rules R ⊆ Σ∗ × Σ∗,
e.g., R = {(ab,ba)} over Σ = {a,b}

▶ defines relation →R on Σ∗ by context closure
(→R) = {(plq,prq) | p ∈ Σ∗, (l , r) ∈ R,q ∈ Σ∗}
a ab b
p l q →R

a ba b
p r q →R abba →R baba →R bbaa

▶ system R is terminating (strongly normalizing, SN(R))
iff no w ∈ Σ∗ starts an infinite →R-chain.

▶ Termination (= uniform halting problem) is not decidable.
we want semi-algorithms for SN(R) and for ¬SN(R)

▶ this talk: on string rewriting, methods can be (and have
been) generalized to term rewriting (functional programs)

Johannes Waldmann, HTWK Leipzig Automatic Termination 2 / 19

Termination: History (brief and imcomplete)
▶ Alan M. Turing: Checking a Large Routine, 1949.

“[using] a quantity which is asserted to decrease continually
and vanish when the machine stops”

▶ Donald E. Knuth and Peter B. Bendix: Simple Word
Problems in Universal Algebras, 1970.
“a well-ordering on the set of all words such that each
right-hand side of an [equation] represents a word smaller
[. . .] that the left-hand side”

▶ Sam Kamin and Jean-Jacques Levy Attempts for
generalizing the recursive path orderings, 1980.
http://perso.ens-lyon.fr/pierre.lescanne/not_

accessible.html#termination
▶ Workshop on Termination (St. Andrews 1993, . . . Leipzig

2025), Termination Competition (2004 . . .),
https://termination-portal.org/

Johannes Waldmann, HTWK Leipzig Automatic Termination 3 / 19

Termination: Basic Method: Counting
▶ {a → b}: number of a is reduced
▶ {aa → bbb,bb → a}: 5|w |a + 3|w |b is reduced
▶ {aa → aba}: number of blocks . . . aa . . . is reduced
▶ {ab → ba}: (bubble sort) number of inversions

(. . . a . . . b . . .) is reduced
▶ {ab → bba}?

number of a stays put, of b goes up, exponentially:
∀k ∈ N : abk →k b2ka, ∀k ∈ N : akb →2k−1 b2k ak ,

▶ {aabb → bbbaaa}? (Hans Zantema, 1990?) (solved by
Alfons Geser 1993)

▶ {aa → bc,bb → ac, cc → ab}? (Hans Zantema, 2003?)
(solved by Dieter Hofbauer and J.W., 2005)

Johannes Waldmann, HTWK Leipzig Automatic Termination 4 / 19

Termination: Basic Method: Interpretation
▶ . . . into well-founded monotone algebra A

▶ non-empty domain DA, with well-founded relation >A
▶ for each letter c ∈ Σ, a function cA : (DA → DA)

such that ∀x , y ∈ DA : x >A y ⇒ cA(x) >A cA(y)
▶ . . . is compatible with R if ∀(l , r) ∈ R, x ∈ DA : lA(x) >A rA(x)

Thm. [folklore] such A exists ⇔ SN(R).
▶ Ex. for R = {ab → ba},

use DA = N with usual >-relation, aA(x) = 2x , bA(x) = x + 1
lA(x) = aA(bA(x)) = 2(x + 1) > rA(x) = bA(aA(x)) = 2x + 1

▶ Ex. for R = {ab → bba},
use DA = N with usual >-relation, aA(x) = 3x , bA(x) = x + 1
gives exponential upper bound on derivation lengths

▶ {aa → aba}? {aabb → bbbaaa}?

Johannes Waldmann, HTWK Leipzig Automatic Termination 5 / 19

Non-Termination
▶ cycle: u →+

R u,
ex. R = {a → b,b → a} has cycle a →2 a,

▶ {0000 → 0111,1001 → 0010} (Andreas Gebhardt, 2006)
has (shortest?) cycle of length 80, width 21
(Dieter Hofbauer: KnockedForLoops, 2010)

▶ loop: u →+
R puq

ex. R = {ab → bbaa} has loop abb → bbaab → bbabbaa
then abb →2 bb abb aa →2 bb bb abb aa aa →2 . . .

▶ non-looping non-termination (must exist)
{bc → dc,bd → db,ad → abb} (Nachum Dershowitz 1987)
abkc → abk−1dc →∗ adbk−1c → abbbk−1c = abk+1c →+ . . .
with two rules: Alfons Geser and Hans Zantema 1999,
with one rule: open

Johannes Waldmann, HTWK Leipzig Automatic Termination 6 / 19

Termination: Examples (Homework)

of these three systems
▶ {ba → acb,bc → abb}
▶ {ba → acb,bc → cbb}
▶ {ba → aab,bc → cbb}

can you tell which is
▶ non-terminating,
▶ terminating, with derivation lengths in exp(exp(n))
▶ . . . multiply exponential . . .

Johannes Waldmann, HTWK Leipzig Automatic Termination 7 / 19

Example: {ba → acb,bc → abb}
▶ has a loop, and a nice method of describing it without

writing down all steps:
▶ for the morphism ϕ : a 7→ ac,b 7→ b, c 7→ ab,

▶ ∀x ∈ Σ : bx →∗ ϕ(x)b,
▶ iteration (D0L system): ∀w ∈ Σ∗ : bkw →∗ ϕk(w)bk

▶ a ϕ→ ac ϕ→ acab ϕ→ acabacb ϕ→ acabacbacabb ϕ→ . . .
number of occurences of b before rightmost a in ϕk(a)
is ≥ Fib(k − 1) ∈ 2Ω(k)

▶ exists k : ϕk(a) = va . . . with |v |b ≥ k
▶ bka →∗ bkϕk(a) = . . . va . . . →∗ . . . bka · · · → . . .

▶ allows to compress “loops of super-exponential length”
(Alfons Geser 2002) down to small (linear) certificate

Johannes Waldmann, HTWK Leipzig Automatic Termination 8 / 19

Example: {ba → aab,bc → cbb}
▶ we have bka →∗ a2k bk (renaming of ab → bba)

and also bck →∗ ckb2k (rename and mirror image)

▶ combined: bcka →∗ ckb2k a →∗ cka22k

b2k

number of steps is Θ(22k
) by comparing lengths

▶ this is one derivation, can it be worse? nonterminating?
no compatible monotone linear interpretation on N,
since this gives singly exponential derivation lengths

▶ prove termination via two interpretations:
▶ a1(x) = x ,b1(x) = 3x , c1(x) = x + 1
▶ a2(x) = x + 1,b2(x) = 3x , c2(x) = x

then w 7→ (w1(0),w2(0)) is lexicographically decreasing
▶ this is an instance of relative termination (Geser 1990)

Johannes Waldmann, HTWK Leipzig Automatic Termination 9 / 19

Example: {ba → acb,bc → cbb}
▶ as before, bck →∗ ckb2k , also, bka → a(cb)k →+ ackb2Θ(k)

then bak starts tower-of-exp length derivation
▶ termination proof: make blocks ∈ {b, c}∗ separated by a,

linear interpretation in each block, combine lexicographically
▶ of course there must be terminating systems with

(uncomputably) long derivations. Else, we could decide TM
halting for fixed input.

▶ the observation here is that we can get long derivations
from small systems already

▶ that’s not too much of a surprise, cf. Busy Beaver TMs
(survey: Heiner Marxen, Jürgen Buntrock, 1990)

▶ systematic enumeration of small (one-rule!) hard (for
termination) string rewrite systems: Winfried Kurth 1990,
Alfons Geser 2004, Mario Wenzel 2016

Johannes Waldmann, HTWK Leipzig Automatic Termination 10 / 19

Matrix Interpretations (Motivation)
▶ recall wfmA for R = {ab → ba}:

DA = N with usual >-relation, aA(x) = 2x , bA(x) = x + 1
lA(x) = aA(bA(x)) = 2(x + 1) > rA(x) = bA(aA(x)) = 2x + 1

▶ now write linear function x 7→ cx + d as matrix
(

c d
0 1

)
,

aA = bA = [ab]A = [ba]A =(
2 0
0 1

) (
1 1
0 1

) (
2 2
0 1

) (
2 1
0 1

)

▶ matrices operate on domain N2 (column vectors)
ordered by x⃗ > y⃗ iff x1 > y1(∧x2 = y2)

▶ generalize to larger dimensions! need suitable domain and
order (⇒ monotonicity, compatibility)
(Dieter Hofbauer, JW, Jörg Endrullis, Hans Zantema, 2006)

Johannes Waldmann, HTWK Leipzig Automatic Termination 11 / 19

Matrix Interpretations (Realization)
▶ A d-dimensional matrix interpretation has domain

Nd−1 × N+, ordered by x⃗ > y⃗ iff x1 > y1 ∧ ∀i > 1 : xi ≥ yi

and for each letter c ∈ Σ, a square matrix [c] ∈ Nd×d

with [c]1,1 ≥ 1, [c]d ,d ≥ 1 (then [c] is monotone)
and is compatible with R if for each (l , r) ∈ R,
[l] ≥ [r] (point-wise everywhere) and [l]1,d > [r]1,d (top right)

▶ example: SN(aa → aba) by interpretation:
[a] = [b] = [aa] = [aba] =

1 1 0
0 0 1
0 0 1

1 0 0
0 0 0
0 0 1

1 1 1
0 0 1
0 0 1

1 1 0
0 0 1
0 0 1

it counts number of aa blocks
▶ equivalent representation: weighted automaton

1 2 3
a : 1

a,b : 1

a : 1

a,b : 1

Johannes Waldmann, HTWK Leipzig Automatic Termination 12 / 19

Matrix Interpretations (Another Example)
▶ . . . domain Nd−1 × N+, x⃗ > y⃗ iff x1 > y1 ∧ ∀i > 1 : xi ≥ yi ,

and for each letter c ∈ Σ, a square matrix [c] ∈ Nd×d

with [c]1,1 ≥ 1, [c]d ,d ≥ 1 (then [c] is monotone)
and is compatible with R if for each (l , r) ∈ R,
[l] ≥ [r] (point-wise everywhere) and [l]1,d > [r]1,d (top right)

▶ example: SN(ab → ba) by interpretation:
[a] = [b] = [ab] = [ba] =

1 1 0
0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

1 1 1
0 1 1
0 0 1

1 1 0
0 1 0
0 0 1

it counts number of inversions . . . a . . . b . . .
▶ equivalent representation: weighted automaton

1 2 3
a : 1

a,b : 1

b : 1

a,b : 1 a,b : 1

Johannes Waldmann, HTWK Leipzig Automatic Termination 13 / 19

Matrix Interpretations: The Killer Example
▶ SN({aa → bc,bb → ac, cc → ab})
▶ a = b = c =

/ 1 2 0 0 0 \ / 1 0 0 1 0 \ / 1 1 0 0 0 \
0 0 0 0 0		0 0 0 0 0		0 0 0 1 0
0 2 0 1 1		0 0 0 1 0		0 2 0 1 2
0 1 1 0 0		0 1 0 2 1		0 1 0 0 0
\ 0 0 0 0 1 / \ 0 0 0 0 1 / \ 0 0 0 0 1 /				
b b = a c =				
/ 1 1 0 3 1 \ / 1 1 0 2 0 \				
0 0 0 0 0		0 0 0 0 0		
0 1 0 2 1		0 1 0 2 1		
0 2 0 4 3		0 2 0 2 2		
\ 0 0 0 0 1 / \ 0 0 0 0 1 /

▶ found in 2005, termination problem was open until then

Johannes Waldmann, HTWK Leipzig Automatic Termination 14 / 19

Matrix Interpretations: Properties, Extensions
▶ exponential upper bound on derivation lengths.

combination with other termination proof methods (e.g.,
lexicographic) can lift this bound

▶ for restricted shape (e.g., upper triangular):
polynomial upper bound (JW. RTA 2010)
▶ recall 3D-Int. for ab → ba (quadratic), aa → aba (linear)
▶ challenge: find polynomially bounded matrices for

{aa → bc,bb → ac, cc → ab}
Sergei Adian gave manual proof for quadratic bound for
derivation lengths

▶ extensions of matrix interpretations:
▶ matrices over other domains (ordered semi-rings),

e.g., arctic ({−∞} ∪ N,max,+,−∞,0)
▶ weaker monotonicity

Johannes Waldmann, HTWK Leipzig Automatic Termination 15 / 19

How We Find Matrices

▶ for dimension d , [l] > [r] is system of d2 inequalities
between polynomials (in |Σ| · d2 unknown entries of [c])

▶ solvability over N is undecidable (Hilbert 10),
over R is hard (Tarski, QEPCAD)

▶ since the method is incomplete for termination anyway, we
don’t need a complete solver, but a powerful semi-algorithm

▶ D. Hofbauer, MultumNonMulta: incrementally add paths to
automaton = increase entries of matrices: aha, gradient
descent! — with a provision for vanishing gradient

▶ JW.: Matchbox: solve constraints by bit-blasting: fix (small)
bit width b, represent numbers in binary, realize arithemtical
operations as boolean circuits, use SAT solver

Johannes Waldmann, HTWK Leipzig Automatic Termination 16 / 19

How We Find Matrices: Completion
▶ D. Hofbauer, MultumNonMulta:

incrementally modify/add paths to automaton = increase
entries of matrices: aha, gradient descent!

▶ when gradient vanishes: use higher derivatives (= increase
weights along a longer path in the automaton)

▶ works best for: sparse matrices, can be large, e.g.,
Removing 1 rule by a matrix interpretation [Hofbauer/Waldmann, RTA 2006]
of type E_J with J = {1,...,2} and dimension 14:

0 -> / \
| 1 0 1 0 0 0 0 0 1 0 0 0 0 0 |
| 0 1 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

...

https://www.starexec.org/starexec/services/jobs/

pairs/615286154/stdout/1?limit=-1

Johannes Waldmann, HTWK Leipzig Automatic Termination 17 / 19

How We Find Matrices: Bit Blasting
▶ JW.: Matchbox: solve constraints by (eager) bit-blasting:

▶ fix (small) bit width b,
▶ represent numbers in unary or binary,
▶ realize arithemtical operations as boolean circuits,
▶ Tseitin-transform to CNF (using ersatz eDSL/library,

Edward Kmett et al. 2010–)
▶ get satisfying assignment from minisat (Niklas Een,

Niklas Sörensson, 2003–), kissat (Armin Biere, 2020–)
▶ for killer example: d = 5, b = 3, unary,

CNF with 3.857 vars, 17.454 clauses,
satisfying assignment found by kissat in < 1 second

▶ works best for: small matrices (can be dense), e.g.,
https://www.starexec.org/starexec/services/jobs/

pairs/615266392/stdout/1?limit=-1

Johannes Waldmann, HTWK Leipzig Automatic Termination 18 / 19

Summary, Discussion, Challenges
▶ matrix intepretation: an instance of well-founded monotone

algebras, have become a standard method in automated
termination, shows that SAT solvers are highly useful

▶ . . . do we really want this? it assumes/supports the “first
write a program, then guess why it works” amateur-hour
style of programming— instead of “use a language with a
type system that only allows total (terminating) programs”

▶ . . . like Agda, but even Agda has built-in automated
termination (“smaller-subterm” criterion for recursive calls)

▶ we want some type inference (avoid writing trivial types)
▶ we want not just termination but bounds on derivation

lengths (cost of computation) (could be part of the type)
▶ terminating? {0000 → 1011,1001 → 0100} (Gebhardt/20)
▶ is termination decidable for one-rule string rewriting?

Johannes Waldmann, HTWK Leipzig Automatic Termination 19 / 19

