Automatic Termination

Johannes Waldmann, HTWK Leipzig

Inference Seminar, FSU Jena, Oct. 2023

Johannes Waldmann, HTWK Leipzig

Automatic Termination

.

Termination: Definition

- ▶ string rewrite system (a.k.a. Turing machine, Markov algorithm, type 0 grammar) is set of rules $R \subseteq \Sigma^* \times \Sigma^*$, e.g., $R = \{(ab, ba)\}$ over $\Sigma = \{a, b\}$
- $\begin{array}{l} \blacktriangleright \ \ \text{defines relation} \to_R \text{ on } \Sigma^* \text{ by context closure} \\ (\to_R) = \{(plq,prq) \mid p \in \Sigma^*, (l,r) \in R, q \in \Sigma^*\} \\ a \ ab \ b \ a \ ba \ b \\ p \ l \ q \ \to_R p \ r \ q \ \to_R abba \to_R baba \to_R bbaa \\ \end{array}$
- ▶ system R is terminating (strongly normalizing, SN(R)) iff no $w \in \Sigma^*$ starts an infinite \to_{R} -chain.
- Termination (= uniform halting problem) is not decidable. we want semi-algorithms for SN(R) and for ¬SN(R)
- this talk: on string rewriting, methods can be (and have been) generalized to term rewriting (functional programs)

Johannes Waldmann, HTWK Leipzig

Automatic Termination

2/10

Termination: History (brief and imcomplete)

- Alan M. Turing: Checking a Large Routine, 1949. "[using] a quantity which is asserted to decrease continually and vanish when the machine stops"
- Donald E. Knuth and Peter B. Bendix: Simple Word Problems in Universal Algebras, 1970.
 "a well-ordering on the set of all words such that each right-hand side of an [equation] represents a word smaller [...] that the left-hand side"
- ➤ Sam Kamin and Jean-Jacques Levy Attempts for generalizing the recursive path orderings, 1980.
 - http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html#termination
- Workshop on Termination (St. Andrews 1993, ... Leipzig 2025), Termination Competition (2004 ...),

https://termination-portal.org/

Johannes Waldmann, HTWK Leipzig

Automatic Termination

Termination: Basic Method: Counting

- $ightharpoonup \{a
 ightharpoonup b\}$: number of a is reduced
- $\{aa \rightarrow bbb, bb \rightarrow a\}$: $5|w|_a + 3|w|_b$ is reduced
- ▶ $\{aa \rightarrow aba\}$: number of blocks . . . aa . . . is reduced
- {ab → ba}: (bubble sort) number of inversions (...a...b...) is reduced
- ▶ { $ab \rightarrow bba$ }? number of a stays put, of b goes up, exponentially: $\forall k \in \mathbb{N} : ab^k \rightarrow^k b^{2k}a, \forall k \in \mathbb{N} : a^k b \rightarrow^{2^{k-1}} b^{2^k}a^k,$
- ► {aabb → bbbaaa}? (Hans Zantema, 1990?) (solved by Alfons Geser 1993)
- \[
 \begin{align*}
 & \alpha ac, bc \to ac, cc \to ab\end{align*}? (Hans Zantema, 2003?) \\
 & \text{(solved by Dieter Hofbauer and J.W., 2005)}
 \]

Johannes Waldmann, HTWK Leipzig

Automatic Termination

4/19

Termination: Basic Method: Interpretation

- ...into well-founded monotone algebra A
 - ▶ non-empty domain D_A , with well-founded relation $>_A$
 - ▶ for each letter $c \in \Sigma$, a function $c_A : (D_A \to D_A)$ such that $\forall x, y \in D_A : x >_A y \Rightarrow c_A(x) >_A c_A(y)$
- ▶ ...is compatible with R if $\forall (I, r) \in R, x \in D_A : I_A(x) >_A r_A(x)$ Thm. [folklore] such A exists \Leftrightarrow SN(R).
- ► Ex. for $R = \{ab \rightarrow ba\}$, use $D_A = \mathbb{N}$ with usual >-relation, $a_A(x) = 2x$, $b_A(x) = x + 1$ $l_A(x) = a_A(b_A(x)) = 2(x + 1) > r_A(x) = b_A(a_A(x)) = 2x + 1$
- ▶ Ex. for $R = \{ab \rightarrow bba\}$, use $D_A = \mathbb{N}$ with usual >-relation, $a_A(x) = 3x$, $b_A(x) = x + 1$ gives exponential upper bound on derivation lengths

Johannes Waldmann, HTWK Leipzig

Automatic Termination

5/19

Non-Termination

- ► cycle: $u \to_R^+ u$, ex. $R = \{a \to b, b \to a\}$ has cycle $a \to^2 a$,
- ► {0000 → 0111, 1001 → 0010} (Andreas Gebhardt, 2006) has (shortest?) cycle of length 80, width 21 (Dieter Hofbauer: KnockedForLoops, 2010)
- ▶ loop: $u \to_R^+ puq$ ex. $R = \{ab \to bbaa\}$ has loop $abb \to bbaab \to bb\underline{abb}$ aa then $abb \to^2 bb$ abb $aa \to^2 bb$ bb abb aa $aa \to^2 \dots$
- ▶ non-looping non-termination (must exist) $\{bc \rightarrow dc, bd \rightarrow db, ad \rightarrow abb\}$ (Nachum Dershowitz 1987) $ab^kc \rightarrow ab^{k-1}dc \rightarrow^* adb^{k-1}c \rightarrow abbb^{k-1}c = ab^{k+1}c \rightarrow^+ \dots$ with two rules: Alfons Geser and Hans Zantema 1999, with one rule: open

Johannes Waldmann, HTWK Leipzig

Automatic Termination

6/19

Termination: Examples (Homework)

of these three systems

- $\blacktriangleright \{ba \rightarrow acb, bc \rightarrow abb\}$
- $\blacktriangleright \{ba \rightarrow acb, bc \rightarrow cbb\}$
- $\blacktriangleright \{ba \rightarrow aab, bc \rightarrow cbb\}$

can you tell which is

- non-terminating,
- ▶ terminating, with derivation lengths in exp(exp(n))
- ... multiply exponential ...

Example: $\{ba \rightarrow acb, bc \rightarrow abb\}$

- has a loop, and a nice method of describing it without writing down all steps:
- for the morphism ϕ : $a \mapsto ac$, $b \mapsto b$, $c \mapsto ab$,
 - $\forall x \in \Sigma : bx \to^* \phi(x)b$,
 - ▶ iteration (D0L system): $\forall w \in \Sigma^* : b^k w \to^* \phi^k(w)b^k$
 - ▶ $a \stackrel{\phi}{\rightarrow} ac \stackrel{\phi}{\rightarrow} acab \stackrel{\phi}{\rightarrow} acabacb \stackrel{\phi}{\rightarrow} acabacbacabb \stackrel{\phi}{\rightarrow} \dots$ number of occurences of b before rightmost a in $\phi^k(a)$ is $\geq \operatorname{Fib}(k-1) \in 2^{\Omega(k)}$
 - exists k: $\phi^k(a) = va...$ with $|v|_b \ge k$
 - $\triangleright b^k a \rightarrow^* b^k \phi^k (a) = \dots va \dots \rightarrow^* \dots b^k a \dots \rightarrow \dots$
- allows to compress "loops of super-exponential length" (Alfons Geser 2002) down to small (linear) certificate

Johannes Waldmann, HTWK Leipzig Automatic Termination 7/19 Johannes Waldmann, HTWK Leipzig Automatic Termination

Example: $\{ba \rightarrow aab, bc \rightarrow cbb\}$

- we have $b^k a \to^* a^{2^k} b^k$ (renaming of $ab \to bba$) and also $bc^k \to^* c^k b^{2^k}$ (rename and mirror image)
- ▶ combined: $bc^k a \to^* c^k b^{2^k} a \to^* c^k a^{2^{2^k}} b^{2^k}$ number of steps is $\Theta(2^{2^k})$ by comparing lengths
- b this is one derivation, can it be worse? nonterminating? no compatible monotone linear interpretation on N, since this gives singly exponential derivation lengths
- prove termination via two interpretations:
 - $ightharpoonup a_1(x) = x, b_1(x) = 3x, c_1(x) = x + 1$
 - $a_2(x) = x + 1, b_2(x) = 3x, c_2(x) = x$

then $w \mapsto (\overline{w}_1(0), w_2(0))$ is lexicographically decreasing

▶ this is an instance of relative termination (Geser 1990)

Johannes Waldmann, HTWK Leipzig

Automatic Terminatio

9/19

Example: $\{ba \rightarrow acb, bc \rightarrow cbb\}$

- ▶ as before, $bc^k \to^* c^k b^{2^k}$, also, $b^k a \to a(cb)^k \to^+ ac^k b^{2^{e(k)}}$ then ba^k starts tower-of-exp length derivation
- ▶ termination proof: make blocks $\in \{b, c\}^*$ separated by a, linear interpretation in each block, combine lexicographically
- of course there must be terminating systems with (uncomputably) long derivations. Else, we could decide TM halting for fixed input.
- the observation here is that we can get long derivations from small systems already
- that's not too much of a surprise, cf. Busy Beaver TMs (survey: Heiner Marxen, Jürgen Buntrock, 1990)
- systematic enumeration of small (one-rule!) hard (for termination) string rewrite systems: Winfried Kurth 1990, Alfons Geser 2004, Mario Wenzel 2016

Johannes Waldmann, HTWK Leipzig

Automatic Termination

10/19

Matrix Interpretations (Motivation)

- ▶ recall wfmA for $R = \{ab \rightarrow ba\}$: $D_A = \mathbb{N}$ with usual >-relation, $a_A(x) = 2x$, $b_A(x) = x + 1$ $l_A(x) = a_A(b_A(x)) = 2(x + 1) > r_A(x) = b_A(a_A(x)) = 2x + 1$
- ▶ now write linear function $x \mapsto cx + d$ as matrix $\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}$

$$a_A = b_A = [ab]_A = [ba]_A =$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

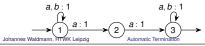
- ▶ matrices operate on domain \mathbb{N}^2 (column vectors) ordered by $\vec{x} > \vec{y}$ iff $x_1 > y_1(\land x_2 = y_2)$
- ▶ generalize to larger dimensions! need suitable domain and order (⇒ monotonicity, compatibility) (Dieter Hofbauer, JW, Jörg Endrullis, Hans Zantema, 2006)

Johannes Waldmann, HTWK Leipzig

Automatic Terminatio

11/19

13/19

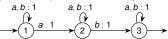

Matrix Interpretations (Realization)

- ▶ A d-dimensional matrix interpretation has domain $\mathbb{N}^{d-1} \times \mathbb{N}_+$, ordered by $\vec{x} > \vec{y}$ iff $x_1 > y_1 \land \forall i > 1 : x_i \ge y_i$ and for each letter $c \in \Sigma$, a square matrix $[c] \in \mathbb{N}^{d \times d}$ with $[c]_{1,1} \ge 1$, $[c]_{d,d} \ge 1$ (then [c] is monotone) and is compatible with R if for each $(I, r) \in R$, $[I] \ge [r]$ (point-wise everywhere) and $[I]_{1,d} > [r]_{1,d}$ (top right)
- ightharpoonup example: $SN(aa \rightarrow aba)$ by interpretation:

$$\begin{bmatrix} a \end{bmatrix} = \begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} aa \end{bmatrix} = \begin{bmatrix} aba \end{bmatrix} = \begin{bmatrix} aba \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

it counts number of aa blocks

equivalent representation: weighted automaton

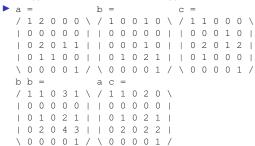

12/19

Matrix Interpretations (Another Example)

- ▶ ... domain $\mathbb{N}^{d-1} \times \mathbb{N}_+$, $\vec{x} > \vec{y}$ iff $x_1 > y_1 \wedge \forall i > 1 : x_i \geq y_i$, and for each letter $c \in \Sigma$, a square matrix $[c] \in \mathbb{N}^{d \times d}$ with $[c]_{1,1} \geq 1$, $[c]_{d,d} \geq 1$ (then [c] is monotone) and is compatible with R if for each $(I,r) \in R$, $[I] \geq [r]$ (point-wise everywhere) and $[I]_{1,d} > [r]_{1,d}$ (top right)
- ightharpoonup example: $SN(ab \rightarrow ba)$ by interpretation:

it counts number of inversions ... a... b...

equivalent representation: weighted automaton



Johannes Waldmann, HTWK Leipzig

Automatic Termination

Matrix Interpretations: The Killer Example

 $ightharpoonup SN(\{aa
ightarrow bc, bb
ightarrow ac, cc
ightarrow ab\})$

▶ found in 2005, termination problem was open until then

Johannes Waldmann, HTWK Leipzig

Automatic Termination

14/19

Matrix Interpretations: Properties, Extensions

- exponential upper bound on derivation lengths.
 combination with other termination proof methods (e.g., lexicographic) can lift this bound
- ► for restricted shape (e.g., upper triangular): polynomial upper bound (JW. RTA 2010)
 - ightharpoonup recall 3D-Int. for ab o ba (quadratic), aa o aba (linear)
 - challenge: find polynomially bounded matrices for {aa → bc, bb → ac, cc → ab}
 Sergei Adian gave manual proof for quadratic bound for derivation lengths
- extensions of matrix interpretations:
 - ▶ matrices over other domains (ordered semi-rings), e.g., arctic $(\{-\infty\} \cup \mathbb{N}, \max, +, -\infty, 0)$
 - weaker monotonicity

Johannes Waldmann, HTWK Leipzig

How We Find Matrices

- ▶ for dimension d, [I] > [r] is system of d^2 inequalities between polynomials (in $|\Sigma| \cdot d^2$ unknown entries of [c])
- ▶ solvability over $\mathbb N$ is undecidable (Hilbert 10), over $\mathbb R$ is hard (Tarski, QEPCAD)
- since the method is incomplete for termination anyway, we don't need a complete solver, but a powerful semi-algorithm
- D. Hofbauer, MultumNonMulta: incrementally add paths to automaton = increase entries of matrices: aha, gradient descent! — with a provision for vanishing gradient
- ► JW.: Matchbox: solve constraints by bit-blasting: fix (small) bit width b, represent numbers in binary, realize arithemtical operations as boolean circuits, use SAT solver

15/19

Johannes Waldmann, HTWK Leipzig Automatic Termination

16/19

How We Find Matrices: Completion

- D. Hofbauer, MultumNonMulta: incrementally modify/add paths to automaton = increase entries of matrices: aha, gradient descent!
- when gradient vanishes: use higher derivatives (= increase weights along a longer path in the automaton)
- works best for: sparse matrices, can be large, e.g.,

https://www.starexec.org/starexec/services/jobs/pairs/615286154/stdout/1?limit=-1

Johannes Waldmann, HTWK Leipzig

A . A A . . To

17/19

How We Find Matrices: Bit Blasting

- ▶ JW.: Matchbox: solve constraints by (eager) bit-blasting:
 - ▶ fix (small) bit width b,
 - represent numbers in unary or binary,
 - realize arithemtical operations as boolean circuits,
 - ► Tseitin-transform to CNF (using ersatz eDSL/library, Edward Kmett et al. 2010—)
 - get satisfying assignment from minisat (Niklas Een, Niklas Sörensson, 2003–), kissat (Armin Biere, 2020–)
- for killer example: d = 5, b = 3, unary, CNF with 3.857 vars, 17.454 clauses, satisfying assignment found by kissat in < 1 second</p>
- works best for: small matrices (can be dense), e.g.,
 https://www.starexec.org/starexec/services/jobs/
 pairs/615266392/stdout/1?limit=-1

Johannes Waldmann, HTWK Leipzig

Automatic Termination

10/10

Summary, Discussion, Challenges

- matrix intepretation: an instance of well-founded monotone algebras, have become a standard method in automated termination, shows that SAT solvers are highly useful
- ...do we really want this? it assumes/supports the "first write a program, then guess why it works" amateur-hour style of programming— instead of "use a language with a type system that only allows total (terminating) programs"
- …like Agda, but even Agda has built-in automated termination ("smaller-subterm" criterion for recursive calls)
- we want some type inference (avoid writing trivial types)
- we want not just termination but bounds on derivation lengths (cost of computation) (could be part of the type)
- ▶ terminating? $\{0000 \rightarrow 1011, 1001 \rightarrow 0100\}$ (Gebhardt/20)
- ▶ is termination decidable for one-rule string rewriting?

Johannes Waldmann, HTWK Leipzig

Automatic Termination

19/19