Motivation

The 595 problems from TPDB/SRS_STANDARD/ICFP_2010 are
Approximating Relative Match-Bounds o large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)

o time consuming: VBS CPU time at termCOMP'21

1 p; 2 1
Alfons Geser*, Dieter Hofbauer®, Johannes Waldmann avg. 907, median 28" (non-ICEP: avg. 517, median 6")

IHTWK Leipzig (Germany), 2ASW Saarland (Germany)
o hard: VBS at termCOMP'21 solves 86 % (non-ICFP: 96 %)

18th Workshop on Termination
Haifa, Israel, August 11-12, 2022

1/14 2/14

Motivation Overview

Methods from this talk (timeout 10")

The 595 problems from TPDB/SRS_STANDARD/ICFP_2010 are

rb rel. rb | mb | rel. mb
o large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5) solved 370 568 538 500
% 622 | 955 | 98.8 99.2
e time consuming: VBS CPU time at termCOMP'21 avg. CPU time || 0.29" | 0.88" | 1.37" | 0.93"

avg. 90", median 28" (non-ICFP: avg. 51", median 6") rb: right barren / mb: approx. RFC-match-bounded

combined with weights -+ reversal; iterated for rel.

@ hard: VBS at termCOMP'21 solves 86 % (non-ICFP: 96 %)

termCOMP’21 versus '22

| Matchbox | MnM | VBS
termCOMP’'21 H 510 ‘ 417 ‘ 514

termCOMP’22 595 594 | 595
2/14 3/14
Overview Overview
Methods from this talk (timeout 10") Methods from this talk (timeout 10")
rb rel. rb | mb | rel. mb rb rel. rb | mb | rel. mb

solved 370 568 588 590 solved 370 568 588 590

% 62.2 95.5 98.8 99.2 % 62.2 95.5 98.8 99.2

avg. CPU time || 0.29” | 0.88" | 1.37" 0.93" avg. CPU time || 0.29" | 0.88" | 1.37" 0.93"

rb: right barren / mb: approx. RFC-match-bounded
combined with weights + reversal; iterated for rel.

rb: right barren / mb: approx. RFC-match-bounded
combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters)

180 1% 180 M@ 45 1, 45 MW

Example: ICFP/180915 (180 rules on 6 letters)

0 180 =% 180 "M@ 45 e, 45 () g

o Idea: remove relatively (on RFC) match-bounded rules (H/W'10)

o New: approximate this property fast

o Ingredients: (Dershowitz'81); (Biichi'64); (McNaughton'94,
Geser'01); automata completion (various authors)

@ Independent implementations in Matchbox and MnM
3/14 314

Termination of (string) rewriting Termination of (string) rewriting

Modular termination proofs by removing rules
o SN(R): R is terminating (or: strongly normalizing) if
every R-derivation contains only finitely many R-steps.
@ SN(R/S): R is terminating relative to S if
every (R U S)-derivation contains only finitely many R-steps.
@ Theorem: If SN(R/S) and SN(S) then SN(RU S).

Modular termination proofs by removing rules

o SN(R): R is terminating (or: strongly normalizing) if

every R-derivation contains only finitely many R-steps.
e SN(R/S): R is terminating relative to S if

every (R U S)-derivation contains only finitely many R-steps.
@ Theorem: If SN(R/S) and SN(S) then SN(R U S).

4/14

How to prove SN(R), or prove SN(R/S)?

o Ad hoc approach: 0 & finitely many.
Show that R-steps do not occur in any R-derivation, or
show that R-steps do not occur in any (R U S)-derivation.

4/14

Termination of (string) rewriting

Modular termination proofs by removing rules
o SN(R): R is terminating (or: strongly normalizing) if
every R-derivation contains only finitely many R-steps.
@ SN(R/S): R is terminating relative to S if
every (R U S)-derivation contains only finitely many R-steps.
o Theorem: If SN(R/S) and SN(S) then SN(R U S).

How to prove SN(R), or prove SN(R/S)?
o Ad hoc approach: 0 € finitely many.
Show that R-steps do not occur in any R-derivation, or
show that R-steps do not occur in any (R U S)-derivation.
@ Nonsensical, this is never the case ...
... but could work for a restricted set of derivations.

Restricting the set of derivations

Definition: Right-hand sides of forward closures

o RFC(R) = (=r U —rright(r))"(rhs(R)),
where — is suffix rewriting, and
right(R) = {[1 —r ‘ (Zlfz — l’) € Rl 75 € 95 [2}.

@ —p are inner steps,
—right(R) are suffix extension steps.

4/14 5/14
Restricting the set of derivations Restricting the set of derivations
Definition: Right-hand sides of forward closures Definition: Right-hand sides of forward closures
o RFC(R) = (—r U —right(r))*(rhs(R)), ® RFC(R) = (—=r U —ight(r))*(rhs(R)),
where — is suffix rewriting, and where — is suffix rewriting, and
right(R) = {fl —r | (2122 — r) € R,Zl 7é € ;ﬁ fz} right(R) = {21 —r ‘ (Zlfz — r) €ER, 75 @ 7& 22}
@ —>g are inner steps, @ — R are inner steps,
—right(R) are suffix extension steps. —right(R) are suffix extension steps.
Theorem (Dershowitz'81) Theorem (Dershowitz'81)
R is terminating iff R is terminating on RFC(R). R is terminating iff R is terminating on RFC(R).
Example: R = {ab — ba}
Here, right(R) = {a — ba}, so RFC(R) = (=R U —igh(r))*(ba) = bTa.
RFC(R) contains no R-redex, so R is terminating.
5/14 5/14
Right barren string rewriting Right barren string rewriting
Generalizing McNaughton'94, Geser'01 Generalizing McNaughton'94, Geser'01
from 1-rule to arbitrary finite systems: from 1-rule to arbitrary finite systems:
Definition: R is right barren Definition: R is right barren
if no £ € Ihs(R) is factor of a string in RFC(R). J if no ¢ € Ihs(R) is factor of a string in RFC(R). J
Theorem
This property is decidable, and it implies termination. J
6/14 6/14

Right barren string rewriting

Generalizing McNaughton'94, Geser'01
from 1-rule to arbitrary finite systems:

Definition: R is right barren
if no ¢ € Ihs(R) is factor of a string in RFC(R).

Theorem
This property is decidable, and it implies termination.

Proof of decidability

If R is right barren, RFC(R) = —yignt(r) *(rhs(R)). This set is regular,
since regularity is preserved under suffix rewriting (Blichi'64).

6/14

Right barren string rewriting (cont'd)

Example: R = {babbaba — abaabbabba}

7/14

Right barren string rewriting (cont'd)

Example: R = {babbaba — abaabbabba}
Automaton accepting rhs(R):

CaCbCacacbcbcacbcbcaC

Right barren string rewriting (cont'd)

Example: R = {babbaba — abaabbabba}
Automaton accepting rhs(R):

a b a a b b a b b a
-O0->0—-0>0>0->0->0>0-0->050>
Closure under —igny(r) by adding epsilon transitions:

:ao_llca:a:b:b:a:b:b:a:

7/14 7/14
Right barren string rewriting (cont'd) Right barren string rewriting (cont'd)
Example: R = {babbaba — abaabbabba} Example: R = {b_""bb"’ba bt
Automaton accepting rhs(R): Automaton accepting rhs(R):
Closure under — ignt(r) by adding epsilon transitions: Cllestite WieQr =gy = A6l Spsilan Lensiiois
ST N v j
205020505080 2080 5050 ~O>0505020B0E0>00A020~
V
7/14 7/14
Right barren string rewriting (cont'd) Right barren string rewriting (cont'd)
Example: R = {babbaba — abaabbabba} Closure algorithm: suffix matches
Automaton accepting rhs(R):
pting rhs(R) For state p, final state f, ({1 — r) € right(R): @ﬁ,@_,
0305030303 04020203030~ el il Lol =
where i is the initial state of the path for r. é r C
Closure under — igpt(r) by adding epsilon transitions:
Y 3 ~ b ~a a:bt'b:a:bsb:a:
The left-hand side of R is not a factor of any accepted string,
so R is right barren, thus terminating.)
7/14 8/14
Right barren string rewriting (cont'd) Removing relatively right barren rules
Definition: S C R is relatively right barren w. r. t. R\ S
Closure algorithm: suffix matches if no £ € Ihs(S) is factor of a string in RFC(R). J
. . 14
For state p, final state f, (¢ — r) € right(R): 1
) e D ©—~0-
If there is a path p = f, add p 5 i, i
where i is the initial state of the path for r. é r C
@ Termination of this algorithm: No new nodes,
so there are only finitely many possible epsilon transitions.
@ Decide whether ¢ € /hs(R) is a factor of some accepted string:
check for path p 4 q (states are accessible and co-accessible).)
8/14 9/14

Removing relatively right barren rules

Definition: S C R is relatively right barren w. r. t. R\ S
if no £ € Ihs(S) is factor of a string in RFC(R).

Removing relatively right barren rules

Definition: S C R is relatively right barren w. r. t. R\ S
if no £ € Ihs(S) is factor of a string in RFC(R).

Theorem: Let S C R be relatively right barren w. r. t. R\ S.
Then SN(R '\ S) implies SN(R).

Theorem: Let S C R be relatively right barren w. r. t. R\ S.
Then SN(R \ S) implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before.
Closure steps for redex matches:

For states p, g, and ({ — r) € R:

If there is a path p 4 g, addp S iand f 5 g,
where i and f are the initial resp. final state of
the path for r.

9/14 9/14
Removing relatively right barren rules Removing relatively right barren rules (cont'd)
Definition: S C R is relatively right barren w. r. t. R\ S Example: R = {ab — ba, ba — acb} (Zantema 04/z006)
if no £ € Ihs(S) is factor of a string in RFC(R). b R

” Automaton for rhs(R): -O0—=0O0=>0~>
Theorem: Let S C R be relatively right barren w. r. t. R\ S. a - b
) . »O—»O—»{ —(>

Then SN(R\ S) implies SN(R).
Closure algorithm: suffix and redex matches
Closure steps for suffix matches as before.
Closure steps for redex matches: Vi
For states p, g, and ({ — r) € R:
If there is a path p - g, add p < i and f 5 g, v o, 4
where j and f are the initial resp. final state of "@*@"
the path for r.
The resulting automaton over-approximates RFC(R). ’

9/14 10/14
Removing relatively right barren rules (cont'd) Removing relatively right barren rules (cont'd)
Example: R = {ab — ba, ba — acb} (Zantema_04/z006) Example: R = {ab — ba, ba — acb} (Zantema_04/z006)
Automaton for rhs(R): —>O—b>o—a>o-> Automaton for rhs(R): —>O—b>o—a>O—>

_)Ca:c:b: :a:c:b:
Closure under —g U —ight(R): —»(5—17»@—3»&» Closure under —r U —ight(R): »é)—h@—ﬂ&»
L B i in e
10/14 10/14

Removing relatively right barren rules (cont'd)

Example: R = {ab — ba, ba — acb} (Zantema 04/z006)

Automaton for rhs(R):

Closure under —g U —ight(r):

There is no path labelled by the left-hand side of S = {ab — ba}:
S is relatively right barren w. r. t. R\ S. As R\ S = {ba — acb} is
terminating (it is right barren), R is terminating.

10/14

Approximating match-bounds

o Refine the approximation of RFC(R) by match-heights (G/H/W'03).

11/14

Approximating match-bounds

o Refine the approximation of RFC(R) by match-heights (G/H/W'03).

o Fix B € N and start with B + 1 disjoints paths for each r € rhs(R).
Layer h < B corresponds to height h.

o Initial and final states are at height 0.

Approximating match-bounds

o Refine the approximation of RFC(R) by match-heights (G/H/W'03).

e Fix B € N and start with B + 1 disjoints paths for each r € rhs(R).
Layer h < B corresponds to height h.

@ Initial and final states are at height 0.
@ Suffix matches always link to height 0.

@ Redex matches have height h = min(layer of letter transition);
epsilon transitions have no height.
Reject if h = B, otherwise link to reduct path at height h+ 1.

11/14

11/14

Approximating match-bounds

o Refine the approximation of RFC(R) by match-heights (G/H/W'03).

o Fix B € N and start with B + 1 disjoints paths for each r € rhs(R).
Layer h < B corresponds to height h.

Initial and final states are at height 0.

Suffix matches always link to height 0.

Redex matches have height h = min(layer of letter transition);
epsilon transitions have no height.
Reject if h = B, otherwise link to reduct path at height h+ 1.

In case of success: complete automaton is a

certificate for match-bound B on RFC(R).

11/14

Approximating match-bounds (cont'd)

Example: R = {abaab — baabbaa} (Zantema 04/z034 reversed)

__________________________ e
1
|

-0 O-OL-0->00-

|
\
1
1
1
1
1
1
1
1
1
1
1
]
g
!

P e f§ e

’
U

Complete automaton is a certificate for match-bound 1 on RFC(R).

12/14

Approximating match-bounds (cont'd)

Complete automaton is a certificate for match-bound 1 on RFC(R).

Removing relatively match-bounded rules (sketch)
@ Now layer B represents all heights > B; we never reject.

o After completion, remove those rules where all redex heights are < B:
they are match-bounded relative to the remaining rules by B on RFC,

so they terminating relative to the remaining rules.

12/14

Summary and discussion
@ This method solves SRS_STANDARD/ICFP_2010.
Weaker on non-ICFP: Solves 164 of 1056.
o Cannot solve Zantema_04/z001.
@ But, by iteration, solves problems that are not (RFC-)match-bounded.
@ Two independent implementations: Confidence, no certification.

e Combined with drop common prefix/suffix, nearly solves Wenzel 16:
MnM solves 222 of 226.

o Implementation: keep the set of epsilon transitions transitively closed.

o Strategy: fix B=2orchoose B=10,1,...7

13/14

Summary and discussion
@ This method solves SRS_STANDARD/ICFP_2010.
Weaker on non-ICFP: Solves 164 of 1056.
Cannot solve Zantema 04/z001.
But, by iteration, solves problems that are not (RFC-)match-bounded.
Two independent implementations: Confidence, no certification.

Combined with drop common prefix/suffix, nearly solves Wenzel_16:
MnM solves 222 of 226.

Implementation: keep the set of epsilon transitions transitively closed.
Strategy: fix B =2 or choose B=10,1, ...7

Challenge: merge this method with the exact RFC-method
(Endrullis/H/W'06).

Challenge: termCOMP needs more SRS benchmarks

— that are independent of any specific method.

Continue systematic or random enumeration.

13/14

