
When You Should Use Lists in Haskell
(Mostly, You Should Not)

Johannes Waldmann, HTWK Leipzig, Germany

WFLP 2018

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 1 / 12

What’s Wrong With This Program?
(e.g.,
http://learnyouahaskell.com/recursion#quick-sort)

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
let smallerSorted = quicksort [a | a <- xs, a <= x]

biggerSorted = quicksort [a | a <- xs, a > x]
in smallerSorted ++ [x] ++ biggerSorted

I singly linked lists!
I append (++) copies the left argument
I never use this in production
I should you use it in teaching? it depends.

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 2 / 12

What Is Wrong With These Functions?

(from base:Data.List)

(\\) :: Eq a => [a] -> [a] -> [a]
union :: Eq a => [a] -> [a] -> [a]
intersect :: Eq a => [a] -> [a] -> [a]

I These specifications cannot be implemented efficiently.
(they all need quadratic time)

I Before you use them, try very hard to come up
with an instance of one of
Ord, Enum, Hashable, Serialize
then replace Data.List with Data.{,Int,Hash}Set

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 3 / 12

What Lists Are, And What They Are Not
data List a = Nil | Cons a (List a)

I these operations are efficient:
add, read, remove the first element
(call the constructors, match on the constructors)

I all others (length, indexed access) are terribly inefficient

I Lists are potentially infinite streams (a.k.a. Iterators):
access each element once, in order, on demand.

I Lists are very bad collections:
access elements more than once, out of order.

I Exercise: why don’t we store the length in each cell?
data List a = Nil | Cons Int a (List a)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 4 / 12

Take-Home Messages of This Talk
I If your program accesses a list by index (with (!!)),

then your program is wrong.
I If your program uses the length function,

then your program is wrong.
I If your program sorts a list, then your program is wrong.
I If you wrote this sort function yourself,

then it is doubly wrong.

I Use lists for streams,
not for random-access collections

I The ideal use of a list is such
that will be removed by the compiler.

I The enlightened programmer
writes list-free code with Foldable.

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 5 / 12

Where Do These Haskell Lists Come From?
I lists seem connected to functional programming

from the beginning of time (= LISP, 1959)
I but the only reason is that LISP

does not have algebraic data types (ADT),
and uses nested lists for trees (well, for everything)

I textbook authors never noticed that ADTs had been
introduced (ML, 1973) — Haskell (1990) was designed to
accomodate such teaching . . . well,

I the defining feature of Haskell is lazy evaluation,
and Streams are a perfect use case (and showcase)

I thus we have the confusion between
I lists as container structures (obsolete, inefficient)
I and lists as streams (important, useful)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 6 / 12

Do We Have Good Containers? Plenty!
I sequences:

I constant-time access, linear concatenation:
I Data.Vector — arrays (with slicing)
I Data.ByteString, Data.Text

(next: Why You Should Never Ever Use String)
I logarithmic access, logarithmic concatenation:
Data.Sequence — size-balanced trees

I sets, maps:
I I logarithmic insert, member/lookup

Data.{Set,Map} — size-balanced trees
I linear in key size: Data.Int{Set,Map} — tries

I with efficient bulk operations: union, intersection, . . .
for point-free programming (no explicit iteration)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 7 / 12

Stream Processing in Constant Space

sum $ map (^ 2) $ [1 :: Int .. 10^8]

I separation of concerns
(consumer, transformer, producer)

I interleaved computation (on-demand evaluation)
I runs in constant space (intermediate data will be

garbage-collected immediately)
I this is a good use of lists

(they represent streams, we access each element once)
I confirm by experiment

(./space +RTS -M80k -A10k -S)
for detail: https://mail.haskell.org/pipermail/
haskell-cafe/2018-September/129913.html

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 8 / 12

https://mail.haskell.org/pipermail/haskell-cafe/2018-September/129913.html
https://mail.haskell.org/pipermail/haskell-cafe/2018-September/129913.html

Stream Processing in No Space

sum $ map (^ 2) $ [1 :: Int .. 10^8]

I compile with ghc -O2: get tight non-allocating inner loop

$wgo_s5we (w_s5w8 :: GHC.Prim.Int#) (ww1_s5wc :: GHC.Prim.Int#)
= case GHC.Prim.==# w_s5w8 ww_s5w5 of {
__DEFAULT ->
jump $wgo_s5we
(GHC.Prim.+# w_s5w8 1#)
(GHC.Prim.+# ww1_s5wc (GHC.Prim.*# w_s5w8 w_s5w8));

I because of code transformations (rewriting the AST)
ghc .. --dump-rule-firings

Rule fired: map (GHC.Base)
Rule fired: fold/build (GHC.Base)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 9 / 12

No-Stream Processing (How To Avoid Lists)

I example: the sum of the elements of a set
m :: Data.Set.Set Int

I first (“obvious”) solution: sum (S.toList m)
assuming sum :: Num a => [a] -> a

I correct solution: sum m , because
sum :: (Num a, Foldable t) => t a -> a
instance Foldable Set where ...

I avoid production of intermediate list in the source already
(don’t defer to compiler or garbage collector)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 10 / 12

No-Stream Processing: How Does It Work
I sum :: (Num a, Foldable t) => t a -> a
sum = getSum . foldMap Sum

class Foldable t where
foldMap :: Monoid m => (a -> m) -> t a -> m

I class Monoid m where
mempty :: m ; mappend :: m -> m -> m

I newtype Sum a = Sum { getSum :: a }
instance Num a => Monoid (Sum a) where
mempty = Sum 0
mappend (Sum x) (Sum y) = Sum (x + y)

I data Set a = Bin Size a (Set a) (Set a) | Tip
I instance Foldable Set where

foldMap f t = go t where
go Tip = mempty ; go (Bin 1 k _ _) = f k
go (Bin _ k l r) = go l ‘mappend‘ (f k ‘mappend‘ go r)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 11 / 12

Take-Home Messages of This Talk
I If your program accesses a list by index (with (!!)),

then your program is wrong.
I If your program uses the length function,

then your program is wrong.
I If your program sorts a list, then your program is wrong.
I If you wrote this sort function yourself,

then it is doubly wrong.

I Use lists for streams,
not for random-access collections

I The ideal use of a list is such
that will be removed by the compiler.

I The enlightened programmer
writes list-free code with Foldable.

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 12 / 12

