When You Should Use Lists in Haskell
(Mostly, You Should Not)

Johannes Waldmann, HTWK Leipzig, Germany

WFLP 2018

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 1/12

What’s Wrong With This Program?
(e.g.,

http://learnyouahaskell.com/recursion#quick-sort)

qgquicksort :: (Ord a) => [a] —> [a]
quicksort [] = []
quicksort (x:xs) =
let smallerSorted = quicksort [a | a <- xs, a <= x]

biggerSorted = quicksort [a | a <- xs, a > x]
in smallerSorted ++ [x] ++ biggerSorted

» singly linked lists!

» append (++) copies the left argument

» never use this in production

» should you use it in teaching? it depends.

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 2/12

What Is Wrong With These Functions?

(from base:Data.List)

(\\) :: Eqg a => [a] -> [a] —> [a]
union :: Eqg a => [a] —-> [a] —> [a]
intersect :: Eq a => [a] -> [a] -> [a]

» These specifications cannot be implemented efficiently.
(they all need quadratic time)
» Before you use them, try very hard to come up
with an instance of one of
Ord, Enum, Hashable, Serialize
then replace Data.List with Data. {, Int, Hash}Set

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 3/12

What Lists Are, And What They Are Not

data List a = Nil | Cons a (List a)

| 2

these operations are efficient:
add, read, remove the first element
(call the constructors, match on the constructors)

all others (length, indexed access) are terribly inefficient

Lists are potentially infinite streams (a.k.a. lterators):
access each element once, in order, on demand.
Lists are very bad collections:

access elements more than once, out of order.

Exercise: why don’t we store the length in each cell?
data List a = Nil | Cons Int a (List a)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018

4/12

Take-Home Messages of This Talk

>

If your program accesses a list by index (with (!1!)),
then your program is wrong.

If your program uses the 1ength function,
then your program is wrong.

If your program sorts a list, then your program is wrong.

If you wrote this sort function yourself,
then it is doubly wrong.

Use lists for streams,

not for random-access collections
The ideal use of a list is such

that will be removed by the compiler.
The enlightened programmer

writes list-free code with Foldable.

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018

5/12

Where Do These Haskell Lists Come From?

>

lists seem connected to functional programming
from the beginning of time (= LISP, 1959)

but the only reason is that LISP

does not have algebraic data types (ADT),

and uses nested lists for trees (well, for everything)
textbook authors never noticed that ADTs had been
introduced (ML, 1973) — Haskell (1990) was designed to
accomodate such teaching ... well,

the defining feature of Haskell is lazy evaluation,
and Streams are a perfect use case (and showcase)
thus we have the confusion between

» lists as container structures (obsolete, inefficient)
» and lists as streams (important, useful)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 6/12

Do We Have Good Containers? Plenty!

» sequences:
» constant-time access, linear concatenation:
» Data.Vector — arrays (with slicing)
» Data.ByteString, Data.Text
(next: Why You Should Never Ever Use string)
» logarithmic access, logarithmic concatenation:
Data.Sequence — Size-balanced trees
» sets, maps:
» » logarithmic insert, member/lookup
Data.{Set,Map} — size-balanced trees
» linear in key size: Data.Int{Set,Map} — tries
» with efficient bulk operations: union, intersection, ...
for point-free programming (no explicit iteration)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 7/12

Stream Processing in Constant Space

sum $ map (~ 2) $ [1 :: Int .. 1078]

» separation of concerns
(consumer, transformer, producer)
» interleaved computation (on-demand evaluation)
» runs in constant space (intermediate data will be
garbage-collected immediately)
» this is a good use of lists
(they represent streams, we access each element once)
» confirm by experiment
(./space +RTS -M80k —-Al0k -S)
for detail: https://mail.haskell.org/pipermail/
haskell-cafe/2018-September/129913.html

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 8/12

https://mail.haskell.org/pipermail/haskell-cafe/2018-September/129913.html
https://mail.haskell.org/pipermail/haskell-cafe/2018-September/129913.html

Stream Processing in No Space

sum $ map (~ 2) $ [1 :: Int .. 1078]

» compile with ghc -02: get tight non-allocating inner loop

Swgo_sbwe (w_sb5w8 :: GHC.Prim.Int#) (wwl_sbwc :: G
= case GHC.Prim.==# w_s5w8 ww_s5w5 of {
_ DEFAULT ->
jump Swgo_s5we
(GHC.Prim.+# w_s5w8 1#)
(GHC.Prim.+# wwl_s5wc (GHC.Prim.x*# w_sbw8 w_sbw

» because of code transformations (rewriting the AST)
ghc .. ——dump-rule-firings
Rule fired: map (GHC.Base)
Rule fired: fold/build (GHC.Base)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 9/12

No-Stream Processing (How To Avoid Lists)

» example: the sum of the elements of a set

m :: Data.Set.Set Int

» first (“obvious”) solution: sum (S.toList m)
assuming sum :: Num a => [a] —-> a

» correct solution: sum m , because
sum :: (Num a, Foldable t) => t a -> a

instance Foldable Set where

» avoid production of intermediate list in the source already
(don’t defer to compiler or garbage collector)

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 10/12

No-Stream Processing: How Does It Work
» sum :: (Num a, Foldable t) => t a —> a
sum = getSum . foldMap Sum
class Foldable t where

foldMap :: Monoid m => (a -> m) -> t a -> m
» class Monoid m where

mempty :: m ; mappend :: m —-> m —> m
» newtype Sum a = Sum { getSum :: a }

instance Num a => Monoid (Sum a) where
mempty = Sum O
mappend (Sum x) (Sum y) = Sum (x + V)
» data Set a = Bin Size a (Set a) (Set a) | Tip
» instance Foldable Set where
foldMap £ t = go t where
go Tip = mempty ; go (Bin 1 k _ _) = f k
go (Bin _ k 1 r) = go 1 ‘mappend' (f k ‘mapr

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018 11/12

Take-Home Messages of This Talk

>

If your program accesses a list by index (with (!!)),
then your program is wrong.

If your program uses the 1ength function,

then your program is wrong.

If your program sorts a list, then your program is wrong.

If you wrote this sort function yourself,
then it is doubly wrong.

Use lists for streams,

not for random-access collections
The ideal use of a list is such

that will be removed by the compiler.
The enlightened programmer

writes list-free code with Foldable.

J. Waldmann, HTWK Leipzig You Really Should Not WFLP 2018

12/12

