’7/'@’50 RIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—-27.9.2018
AGE 2018 Universitidt Halle-Wittenberg, Technischer Bericht, S. 1-4.

One-Dimensional Tiling Systems and String Rewriting

Alfons Geser” Dieter Hofbauer’” Johannes Waldmann

(AHTWK Leipzig, Germany

(B) ASW — Berufsakademie Saarland, Germany

Abstract

We use one-dimensional tiling systems (strictly locally testable languages) to over-
approximate reachability sets in string rewriting, and apply this to prove termination auto-
matically. This refines the root labeling method by restricting to right-hand sides of forward
closures.

1. Motivation

The k-tiles of a string are its factors (contiguous sub-words) of length k. The tiled version
tiled;,(R) of a rewrite system R over X describes the action of R on tiled words. Since tiled (R)
has a larger alphabet (namely, X*), it may be easier to analyze:

Example 1.1 For the rewriting system R = {aa — aba}, we have tiled,(R) = {[aa] — [ab,ba]}.
It is easy to see that tiled>(R) terminates, since each rule application reduces the number of
occurrences of tile aa. The original system R does not admit such a proof of termination, since
R does not remove any letters.

2. Tiling Systems

A tiling system specifies a language by considering prefixes, factors, and suffixes of bounded
length. We give an equivalent definition that allows a uniform description, using end markers
<,>> ¢ X. A similar method is used for two-dimensional tiling [3]].

Definition 2.1 Forw € L%, the k-bordered version is bord),(w) = <F~Tw>F~1 over LU{<1, >}.
The k-tiled version tiled,(w) is the string over ¥ of all factors of length k, or € in case |w| < k.
Let tilesy,(w) denote alphabet(tiledy,(w)), the set of letters in tiledy (w).

Example 2.2 tiled;(bord,(abbb)) = tiled,(<1abbbr>) = [<a, ab,bb, bb, br>], tilesy(bordy (abbb)) =
{<a,ab,bb,br>}, tiles,(bordy(a)) = {<a,ar>}, tilesy(bords (€)) = { <>}, and tileds(bords(a)) =
[<<a, <a>,a>>].

The language defined by a set of tiles 7" of length k is {w € L* | tilesy. (bord (w)) C T'}. This
is an equivalent definition of the class of strictly locally k-testable languages [0, 8]], a subclass of
regular languages. We will use one-dimensional tiling systems to over-approximate reachability
sets in string rewriting.

2 Alfons Geser, Dieter Hotbauer, Johannes Waldmann

3. Rewriting and Reachability

A string rewriting system over alphabet ¥ consists of rewrite rules. We use standard concepts
and notation, with this extension: a constrained rule is a pair of strings [, with a constraint
c € {factor, suffix}, indicating where the rule is to be applied. The rewrite relations are:

—71,r factor = {(Jcly,:m"y) ’ T,y € Z*}, 71,7 suffix = {(:L’l,x'r’) ’ T e Z*}a

A constrained rule ([,r,c) is denoted by [—. r. Standard rewriting corresponds to the factor
constraint, therefore — abbreviates —¢,cto,. FOr a rewrite system R, we define — as the union
of the rewrite relations of its rules. For a relation pon £* and aset L C X%, let p(L) = {y | 3z €
L,(z,y) € p}. Hence the set of R-reachable strings from L is —7 (L), or R*(L) for short. A
language L C X* is closed w.rt. R if —g(L) C L.

Example 3.1 For R = {¢¢ = factor DC, @ — factor AC, € = suffi bC, b —> sutfix act , we have bbb — 5, sy
bbac — gaetor bacc. The reachability set R*({bc,ac}) is (a+b)b*c. This set is closed w.r.t. R.

R over X is called terminating on L C X* if for each w € L, each R-derivation starting at w
is finite, and R is terminating if it is terminating on X*.

4. Closures
Given a rewrite system R over alphabet £, a closure C = (I,r) of R is a pair of strings with
l —>E r such that each position of r took part in some step of the derivation. In particular,

we use forward closures [5)]. Their right-hand sides can be computed by (factor and) suffix
rewriting.

Proposition 4.1 [4] RFC(R) = (RU forw(R))*(rhs(R)), where
fOI’W(R) = {l] —suffix T | (l]lz — 7’) eERI #e# lz}.
They are related to termination by

Theorem 4.2 [1|] R is terminating (on ¥*) if and only if R is terminating on RFC(R).

Example 4.3 For R = {cc — be,ba — ac} we have forw(R) = {¢ — g, be, b — gy ac} and
RFC(R) = (a+b)b*c, cf. Example[3.1, As RFC(R) contains no R-redex, R is trivially termi-
nating on RFC(R), therefore by Theorem R is terminating.

In the following, we use tiled rewriting to approximate RFC(R). This allows to obtain the
termination proof of Example [4.3] automatically.

One-Dimensional Tiling Systems and String Rewriting 3

5. Tiled Rewrite Systems

We enlarge the alphabet of a rewrite system by tiling.

Definition 5.1 For a rule | — 40 7 0ver X we define
tiledy, (I = factor 7) = {tiledy (2ly) — factor tiledi (xry) | x € tiles,_ 1 (Q*E"),y € tiles,_1 (X" >")}
and for a given set of tiles S C tilesy,(X*)

tileds (I = factor 1) = tiledy. (I = factor 7) N S™ X S™ x {factor}.

Both tileds and tiled;, are extended to sets of rules.

Example 5.2 tiled(ba — geror ac) contains 16 rules, among them [<1b,ba, al>] — [<a,ac,c>],
[<ib,ba,aa] — [<a,ac,cal, ..., [ab,ba,a>] — [aa,ac,cr>], ..., [¢b,ba,ac] — [ca,ac, cc]. For S =
{ac,ba,bb, cc} we get tileds (ba — faetor ac) = {[bb, ba, ac] — [ba,ac, cc]} and for any strict subset
T of S, tiledr(ba — getor ac) = 0.

Derivations w.r.t. R and tiledy(R) are bi-similar, and we obtain

Theorem 5.3 For S C tiles;,(X*), if Lang(S) is closed w.r.t. R, then R is terminating on Lang(.S)
if and only if tileds(R) is terminating.

Example 5.4 (cont.) R = {cc — be,ba — ac}. RFC(R) = Lang(S) for the set of tiles S =
{<a, <b,ab,ac,bb,bc,ci>}. The set RFC(R) is closed w.r.t. R by definition and tileds(R) is
empty, therefore terminating. By Theorem R is terminating on RFC(R) and by Theo-
rem[4.2, R is terminating.

We obtain a set of tiles for using Theorem [5.3] by the following algorithm.
Algorithm 5.5 e Input: A rewrite system R over ¥, a set of tiles T' C tiles;,(£*).
e Output: A set of tiles S C tiles;,(L*) such that T C S and Lang(5) is closed w.r.t. R.
e Implementation: S = J; S; for the sequence given by
So="T, Siy1 = S; U alphabet(rhs(tiled),(R) N Ihs™ ' (S¥))).

In each step, each rule is extended by contexts of length £ — 1 on both sides such that the
extended left-hand side can be covered. Then the tiles of the extended right-hand side are added.
The algorithm terminates since (.5;) is increasing w.r.t. C and bounded by tiles; (X*).

6. Representing Tiling Systems by Automata

For an efficient implementation of the closure algorithm[5.5] we represent a set of tiles of length
k by a deterministic (not necessarily complete or minimal) automaton over XU {<1,>} with
states from <1<* Utiles;,_; (X*) U {>*~1}, initial state € and final state >*~!. For each transition
p 5 g, state ¢ is the suffix of length £ — 1 of p-c. Such an automaton A represents the set of
tiles

tiles(A) ={p-c|p—=aqlp|=k—1}.

4 Alfons Geser, Dieter Hotbauer, Johannes Waldmann

Example 6.1 (Example cont’d) This automaton represents {<la, <1b, ab, ac,bb,bc, ct>}:

(D2

@<®b b

Adding tiles in Algorithm [5.5] then corresponds to adding states and edges. With the au-
tomata representation, we can quickly check whether a left-hand side of a rule is covered by
the current set of tiles. Our implementation can handle automata with 10* transitions (tiles) in
a few seconds.

7. Discussion

We have presented a method to compute a regular over-approximation of reachability sets, using
tiling systems, represented as automata, and we applied this to termination analysis. The root
labeling method [7]] corresponds to tiling on the full set £*, for width 2. Our method allows any
width, and restricts the set of tiles. Restriction to right-hand sides of forward closures (RFC)
had already been applied to enhance the power of the matchbound termination proof method
[2]. Our method decouples the RFC method from the matchbound method.

References

[1] NACHUM DERSHOWITZ, Termination of Linear Rewriting Systems. In: SHIMON EVEN, ODED

KARI1V (eds.), Automata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel, July
13-17, 1981, Proceedings. Lecture Notes in Computer Science 115, Springer, 1981, 448—458.

[2] ALFONS GESER, DIETER HOFBAUER, JOHANNES WALDMANN, Match-Bounded String Rewriting
Systems. Appl. Algebra Eng. Commun. Comput. 15 (2004) 3-4, 149-171.

[3] DORA GIAMMARESI, ANTONIO RESTIVO, Two-Dimensional Languages. In: ARTO SALOMAA,
GRZEGORZ ROZENBERG (eds.), Handbook of Formal Languages. 3, Springer, 1997, 215-267.

[4] MIKI HERMANN, Divergence des systemes de réécriture et schématisation des ensembles infinis de
termes. Habilitation, Université de Nancy, France, 1994.

[S] DALLAS S. LANKFORD, D. R. MUSSER, A finite termination criterion. Technical report, Informa-
tion Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA, 1978.

[6] ROBERT MCNAUGHTON, SEYMOUR PAPERT, Counter-Free Automata. MIT Press, 1971.

[7] CHRISTIAN STERNAGEL, AART MIDDELDORP, Root-Labeling. In: ANDREI VORONKOV (ed.),
Rewriting Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg, Aus-
tria, July 15-17, 2008, Proceedings. Lecture Notes in Computer Science 5117, Springer, 2008, 336—
350.

[8] YECHEZKEL ZALCSTEIN, Locally testable languages. Journal of Computer and System Sciences 6
(1972) 2, 151 - 167.

	1 Motivation
	2 Tiling Systems
	3 Rewriting and Reachability
	4 Closures
	5 Tiled Rewrite Systems
	6 Representing Tiling Systems by Automata
	7 Discussion
	References

