
How I Teach
Functional Programming

Johannes Waldmann, HTWK Leipzig

WFLP Würzburg, 22. 9. 2017

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 1 / 16

For Whom, and Why
I course Advanced Programming

(Fortgeschrittene Programmierung)
I mandatory for 4th semester B. Sc. students of

CS (Informatik and Medieninformatik)
I main thesis:

advanced programming is (based on concepts
from) functional programming

I for example: algebraic data types, static typing,
higher order functions, laziness

I this talk: course topics illustrated by exercises
(selected — find more in the paper)

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 2 / 16

Course Topics
I first-order data and programs

I data = terms over signature = algebraic
data types

I programs = term rewriting systems =
oriented equations, pattern matching

I higher-order data and programs (λ-calculus)
I patterns for systematic recursion

I algebra over signature = fold
I generic polymorphism, restricted polymorphism

I type variables, type classes
I evaluation on demand, streams, FRP

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 3 / 16

First-Order Data
I Exercise: replace undefined by an expression

such that test is True
import qualified Data.Set as S
-- imported from Prelude:
-- data Bool = False | True
data C = R | G | B deriving (Eq, Ord, Show)
data T = X C | Y Bool Bool deriving (Eq, Ord, Show)
solution :: S.Set T
solution = S.fromList undefined
test :: Bool
test = S.size solution == 7

I automated grading by Leipzig autotool
software for E-Learning, E-Assessment

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 4 / 16

First-Order Programs (Model)
I Example Exercise
for the system TRS

{ variables = [x, y, z]
, rules = [f (f (x,y),z) -> f (x,f (y,z))

, f (x,f (y,z)) -> f (f (x,y),z)] }
give a sequence of steps
from f (f (f (a , b), f (c , d)), e)
to f (a , f (f (b , c), f (d , e)))

I Example solution (attempt):
[Step { rule_number = 0 , position = [0,1]

, substitution = listToFM
[(x, f(a, b)), (y, f(c, d)), (z, e)] }]

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 5 / 16

FO Programs — Pattern Matching
I data Bool = False | True
data T = F T | G T T T | C

I answer for each of the following expressions:
I is it statically correct
I what is its result (its dynamic semantics)
I is the pattern set complete? disjoint?

1. case False of { True -> C }
2. case False of { C -> True }
4. case G (F C) C (F C) of { G x y z -> F z }
5. case F C of { F (F x) -> False }
6. case F C of { F (F x) -> y }
7. case F C of { F x -> False ; True -> False }
8. case True of { False -> C ; True -> F C }

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 6 / 16

FO Programs — Automated Testing
I import Prelude hiding (min)

data N = Z | S N deriving (Show , Eq)

plus :: N -> N -> N
plus x y = case x of

{ Z -> y ; S x’ -> S (plus x’ y) }

min :: N -> N -> N ; min x y = undefined

spec1 = \ x y -> min x y == min y x
spec2 = \ x y -> min (plus x y) x == x

I property-based testing (small|lean-check)
I specification should not give away solution

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 7 / 16

Type Inference — Eminently Useful
I types are not just for “slowing down the

programmer”, or documenting code
I check :: Testable a => a -> IO ()
class Testable a where ...
instance Testable Bool where ...
instance (Listable a, Testable b)

=> Testable (a -> b) where ...
class Listable a where tiers :: [[a]]
instance Listable Int where ...

I check (\(x::Int)(y::Int)->x+y==y+x),
given the above, the compiler statically infers
instance Testable (Int->(Int->Bool))
and generates useful code in each infer. step

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 8 / 16

Polymorphic Types — Data
I given
data () = ()
data Bool = False | True
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

data C = R | G | B
data Pair a b = Pair a b

name all elememts of type
Either (Pair Bool (Maybe ()))

(Maybe (Maybe C))

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 9 / 16

Polymorphic Types Prevent Cheating
I Exercise:
reverse :: List a -> List a

reverse xs = undefined
-- specification
reverse (Cons True (Cons False Nil))

== Cons False (Cons True Nil)
I cheating solution:
reverse xs = Cons False (Cons True Nil)

is prevented by the type declaration
I the point is: declaring a polymorphic type

enforces abstraction
Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 10 / 16

Schematic Recursion — Folds
I principle: apply a recursion scheme = replace

each constructor (function symbol) with a
corresponding function.

I ⇒ each algebraic data type has exactly one
such schema (fold), its type and implementation
can be read off the data declaration
data List k

= Nil | Cons k (List k)
fold :: r -> (k -> r -> r)

-> List k -> r
I write down “the fold” for Bool, Maybe,. . . , look

up its type in https://www.haskell.org/hoogle/

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 11 / 16

https://www.haskell.org/hoogle/

How To Solve “Write f as a Fold”
I Method:

I draw tree for example input t
I write f (s) at root of each substree s of t
I read off test cases for fold’s argument func.s

I Example:
f = \xs -> odd (length xs) = fold n c

t = C 7 (C 4 (C 7 Nil)); f t = True
s = C 4 (C 7 Nil) ; f s = False

f t = c 7 (f s1) ; True = c 7 False

I avoid operational reasoning (“then we go to. . . ”)
I all we need is correctness of the induction step

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 12 / 16

How To Prove that f is Not a Fold

I Method:
I same as before
I derive contradiction

I Example: f = \ xs -> length xs >= 2
f (Cons () (Cons () Nil)) = True
f (Cons () Nil)) = False
f Nil = False
==> c () False = True
and c () False = False

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 13 / 16

Rel. to “standard” (i.e., OO) Topics
I data: immutable objects

e.g., git data model (file system and history)
I trees: composite design pattern
I higher order functions: strategy design pattern
I recursion pattern (fold): visitor design pattern
I lazy stream: iterator design pattern
I functional reactive programming:

(an alternative to) observer design pattern

. . .λ calculus is being invented over and over —
who was first?

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 14 / 16

λ Calculus — Invented in 1892 by . . .
Arthur C. Doyle: Adventure of the Blue Carbuncle

I Hotel Cosmopolitan Jewel Robbery. — John
Horner, 26, plumber, was brought up upon the
charge of having upon the 22nd inst., abstracted
from the jewel-case of the Countess of Morcar
the valuable gem known as the blue carbuncle.

I Found at the corner of Goodge Street, a goose
and a black felt hat. Mr. Henry Baker can have
the same by applying at 6:30 this evening at
221B, Baker Street.
(apply = vor(an)stellen, baker $ holmes)

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 15 / 16

Convergence of Language Evolution?
I $ ghci # GHCi, version 8.0.2
Prelude> let d f x = f (f x)
Prelude> d d d (\x -> x + 1) 0
16

I $ node # v8.5.0, ES6
> let d = f => x => f (f (x))
> d(d)(d)(x => x + 1)(0)
16

I nice: syntactic differences mostly gone. BUT . . .
I We Need Static Typing!

Watch out for attempts to undermine, downplay,
postpone, ignore it (especially in teaching).
We teach the right thing, industry will follow —
not the other way around.

Johannes Waldmann, HTWK Leipzig How I Teach Functional Programming WFLP Würzburg, 22. 9. 2017 16 / 16

