Weighted Automata and Rewriting Lecture 2

Johannes Waldmann (HTWK Leipzig)

ISR Eindhoven 2017

From strings to trees (simplified)

- general form of tensor (applied to vectors v_{i})
$T\left(v_{1}, \ldots, v_{k}\right)=\sum c_{i_{1}, \ldots, i_{i}} \cdot v_{1, i_{1}} \cdot \ldots \cdot v_{k, i_{k}}$
Ex. $T\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right),\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)\right)=\left(\begin{array}{c}2 x_{1} y_{1}+x_{2} y_{3}+5 x_{3} y_{3} \\ x_{1} y_{2}+3 x_{2} y_{3}+2 x_{3} y_{1} \\ 4 x_{2} y_{1}\end{array}\right)$
not substitution closed ($T(x, x)$ is quadratic)
- restrictions: $x_{3}=y_{3}=1$, no mixed monomials

Ex. $T^{\prime}\left(\left(\begin{array}{c}x_{1} \\ x_{2} \\ 1\end{array}\right),\left(\begin{array}{c}y_{1} \\ y_{2} \\ 1\end{array}\right)\right)=\left(\begin{array}{c}x_{2}+5 \\ 3 x_{2}+2 y_{1} \\ 1\end{array}\right)$

- write as affine functions (T_{0} vector; T_{1}, \ldots matrices)
$T\left(v_{1}, \ldots, v_{k}\right)=T_{0}+T_{1} \cdot v_{i}+\ldots+T_{k} \cdot v_{k}$
$T^{\prime}(x, y)=\binom{5}{0}+\left(\begin{array}{ll}0 & 5 \\ 0 & 3\end{array}\right) x+\left(\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right) y$

Remark on previous example

- $[f](x, y)=\binom{0}{1}+\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) x+\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) y$
- can evaluate by CAS (maxima)
$\mathrm{f}(\mathrm{x}, \mathrm{y})$:= matrix([0],[1])
$+\operatorname{matrix}([1,1],[0,1])$. x
$+\operatorname{matrix}([1,0],[0,1])$. y ;
x : matrix([x1],[x2]) ;
y : matrix([y1],[y2]) ;
z : matrix([z1],[z2]) ;
expand ($[f(f(x, y), z), f(x, f(y, z))])$;
- Exercise: in $[t]=\binom{t_{1}}{t_{2}}$,
what is the meaning of t_{1}, t_{2} (if there is one)?
- Exercise: does the growth match the derivational complexity (asymptotically)?
Johannes Waldmann (HTWK Leipzig) Weighted Automata and Rewriting Lecture 2

Arctic Weights

Automata with Arctic Weights

- the arctic semiring $\mathbb{A}=(\{-\infty\} \cup \mathbb{N},-\infty, \max , 0,+)$
this is the opposite of the ($\mathrm{min},+$) semiring, named tropical in honour of Imre Simon, who lived in Sao Paulo, Brasil
- essential difference to \mathbb{N} : monotonicity of \oplus
in $\mathbb{N}: x_{1}<x_{2} \Rightarrow x_{1}+y<x_{2}+y$
in $\mathbb{A}: x_{1}<x_{2} \nRightarrow x_{1} \oplus y<x_{2} \oplus y$
$x_{1}<x_{2} \wedge y_{1}<y_{2} \Rightarrow x_{1} \oplus y_{1}<x_{2} \oplus y_{2}$
- a closed and monotone set of matrices ($M,>$)
$M=\left\{A \mid A_{1,1} \neq-\infty\right\}$
$A>B \Longleftrightarrow \forall i, j: A_{i, j} \otimes B_{i, j}$
where $a \otimes b \Longleftrightarrow(a>b) \vee(a=-\infty=b)$

From strings to trees (in general)

- weighted automaton on strings:
- final weight: $f_{A} \in 1 \times Q \rightarrow S$,
- transition: t_{A} maps letter to linear function (matrix),
- initial weight: $i_{A} \in Q \times 1 \rightarrow S$.
- weighted automaton on trees:
- final weight (at top of tree): $f_{A} \in 1 \times Q \rightarrow S$,
- transition: t_{A} maps k-ary function symbol g to k-ary multilinear function (tensor)

$$
[g]\left(v_{1}, \ldots, v_{k}\right)=\sum c_{i_{1}, \ldots, i_{j}} \otimes v_{1, i_{1}} \otimes \ldots \otimes v_{k, i_{k}}
$$

- initial weights (at leaves): for each 0-ary symbol, $Q \times 1 \rightarrow S$
- semantics (automaton maps term t into S)
- based on runs, where run maps position to state
- algebraically: $f_{A} \otimes[t]$

Matrix Interpretations for Term Rewriting

- use affine functions (T_{0} vector; T_{1}, \ldots matrices) $T\left(v_{1}, \ldots, v_{k}\right)=T_{0}+T_{1} \cdot v_{i}+\ldots+T_{k} \cdot v_{k}$
- interpret ground term by vector, term with k variables as k-ary affine function
- weight of term $t=$ sum of weights of paths in t
- monotonicity: $\forall 1 \leq i \leq k:\left(T_{k}\right)_{1,1} \geq 1$.
- order: $S>T$ iff $\left(S_{0}\right)_{1}>\left(T_{0}\right)_{1}$
and $\forall 0 \leq i \leq k: S_{i} \geq T_{i}$ (component-wise)
- local compatibility: $\forall(I, r) \in R:[I]>[r]$
- Exercise: $[f](x, y)=\binom{0}{1}+\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) x+\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) y$ is compatible with $\{f(f(x, y), z) \rightarrow f(x, f(y, z))\}$

\section*{| Johannes Waldmann (HTWK Leipzig) | Weighted Automata and Rewriting Lecture 2 | ISR Eindhoven 2017 | $4 / 16$ |
| :--- | :--- | :--- | :--- | :--- |}

Remark on Derivational Complexity

- law of associativity, (AVL) right rotation

$$
A=\{f(f(x, y), z) \rightarrow f(x, f(y, z))\}
$$

- let $L[\cdot]=f(a, \cdot) ; R[\cdot]=f(\cdot, a)$, then $R[L[y]] \rightarrow_{A} L[R[y]]$
- so A can simulate $R L \rightarrow L R$,
thus dc_{A} is at least quadratic
- growth of $[f](x, y)=\binom{0}{1}+\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) x+\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) y$
is $O(n) \cdot \operatorname{growth}\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\} \in O\left(n^{2}\right)$

Arctic Automata: Examples

- $M=\left\{A \mid A_{1,1} \neq-\infty\right\}$
$A>B \Longleftrightarrow \forall i, j: A_{i, j} \otimes B_{i, j}$ where $a \otimes b \Longleftrightarrow(a>b) \vee(a=-\infty=b)$
- Exercise: check that this is compatible with $\{a a \rightarrow a b a\}$:

$$
t(a)=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), t(b)=\left(\begin{array}{cc}
0 & -\infty \\
-\infty & -\infty
\end{array}\right),
$$

compute and compare $t(a a), t(a b a)$

- compatible with $\{a b \rightarrow b a\}$?

Arctic Automata: Growth

- compatible with $R=\{a b \rightarrow b a\}$? impossible, since dc_{R} is quadratic, but. . .
- Thm: \forall arctic automaton A : growth (A) is linear
- Proof: arctic multiplication = standard addition,
$\left\|m_{1} \otimes \ldots \otimes m_{k}\right\| \leq k \cdot \max _{i}\left\|m_{i}\right\|$
- comments:
- restricts the power of this termination proof method
- gives a stronger statement about dc
- research problem:
are there well-founded semirings S with quadratic (or other polynomial) growth (of matrices)?

Arctic Top Termination (Example)

- z086 $R=\left\{a^{2} \rightarrow b c, b^{2} \rightarrow a c, c^{2} \rightarrow a b\right\}$
- $\mathrm{DP}(R)=\{A a \rightarrow B c, A a \rightarrow C, B b \rightarrow A c, B b \rightarrow C, C c \rightarrow$ $A b, C c \rightarrow B\}$
- remove some rules by counting symbols, remaining: $\operatorname{DP}(R)^{\prime}=\{A a \rightarrow B c, B b \rightarrow A c\}$
- $[a]=\left(\begin{array}{ll}0 & 3 \\ 2 & 1\end{array}\right),[b]=\left(\begin{array}{cc}3 & 2 \\ 1 & -\infty\end{array}\right),[c]=\left(\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right)$ $[A]=[B]=\left(\begin{array}{ll}0 & -\infty\end{array}\right)$
- $[B b]=\left(\begin{array}{ll}3 & 2\end{array}\right) \otimes[A c]=\left(\begin{array}{ll}0 & 1\end{array}\right)$ other rules weakly decreasing
- this works very well (e.g., in termination competitions), also with refinements of DP

Fuzzy Weights (Match Bounded Rewriting)

- the fuzzy semiring
$\mathbb{F}=(\{-\infty,+\infty\} \cup \mathbb{N},+\infty, \min ,-\infty, \max)$
- for any finite M, the set M^{*} (all products) is finite \Rightarrow no \mathbb{F} automaton computes a measure function for termination of rewriting
- but we can transform to a different semiring (only used in paper proofs, actual computation is in \mathbb{F})
- historically, this was the first instance (2003) of the matrix termination methods
- the actual motivation was preservation of regularity of languages under rewriting
(with termination only a side effect)

Fuzzy Weights (Match Bounds)

Decomposition of Match-Bounded Rewriting

- instead of $[/] \Theta_{\mathbb{F}}[r]$ consider:
$\operatorname{match}_{c}(R):=\operatorname{all}(I, r) \in(\Sigma \times\{0,1, \ldots, c\})^{* 2}$
with max height $I>\max$ height $r \wedge$ (base I, base $r) \in R$
Ex. $\left(a_{2} a_{1}, a_{1} b_{0} a_{0}\right) \in \operatorname{match}_{2}\{(a a, a b a)\}$
- split rules, using formal left and right inverses:

$$
C=\left\{a_{2} \rightarrow a_{1} b_{0} a_{0} \overrightarrow{a_{1}}, \ldots\right\}, E=\left\{\overrightarrow{a_{1}} a_{1} \rightarrow \epsilon, \ldots\right\}
$$

$\operatorname{match}_{c}(R)^{*}=(C \cup E)^{*} \cap$ original alphabet

- re-order derivations
match $_{c}(R)^{*}=\left(C^{*} \circ E^{*}\right) \cap$ original alphabet
- match $_{c}(R)^{*}$ preserves REG
(C terminates (!), C^{*} is substitution, E is inverse monadic)
- R match-bounded (Def: ...) $\Rightarrow R^{*}$ preserves REG

Arctic Termination for Terms

- arctic affine functions
$T\left(v_{1}, \ldots, v_{k}\right)=T_{0} \oplus T_{1} \otimes v_{i} \oplus \ldots \oplus T_{k} \otimes v_{k}$ are not (strictly) monotonic
- arctic automata "do not work" (for termination) for (≥ 2 2)-ary symbols.
they work for unary symbols with $T_{0}=$ zero vector
- The dependency pairs (DP) transformation reduces a termination problem $\mathrm{SN}(R)$
to a relative top termination problem $\operatorname{SN}\left(\mathrm{DP}(R)_{\text {top }} / R\right)$
- for that, arctic affine functions are fine
- top rewriting \Rightarrow no top context \Rightarrow strict monotonicity not needed
- relative termination \Rightarrow weak monotonicity is enough

Arctic Top Termination — Remark

- how to find coefficients for arctic matrices?
- constraint system in SMT logic QF_LIA (linear integer arithmetic $=$ boolean combination of inequalities between linear functions of unknowns)
- Corollary: it is decidable whether finite R has compatible arctic automaton with given size (number of states).
- challenge problem: is it also without the size? perhaps with a bound on the weights?
- in practice, often use QF_BV (bitvectors), since we have a lot of boolean unknowns (one for each \oplus, which is max) this is not complete (because we fix a bit width in advance)

Fuzzy Weights (Match Bounded Rewriting)

Exercise: compute [aa], [aba]

- embed into semiring $M(\mathbb{F})$
- domain: TU Multisets over \mathbb{N}
- addition: min_{\gg} w.r.t. multiset extension \gg of $>$ on \mathbb{N}
- multiplication: multiset union
- $\theta_{M(\mathbb{F})}$ is monotone, $\theta_{\mathbb{F}}$ implies $\theta_{M(\mathbb{F})}$

Constructing Compatible Automata

- that is, w.r.t. local compatibility $A(p, I, q)>A(p, r, q)$
- comes in two flavours: if semiring zero is ...
- high: uncovered redex \Rightarrow add reduct path
- low: uncovered reduct \Rightarrow add redex path
- for weights from \mathbb{F}, completion actually works:
- compute closure w.r.t. $(C \cup E)^{*}$
- if R is match-bounded, then this stops
- does R have compatible \mathbb{F}-weighted automaton with...
- number of states $\leq S$, no bound on weights: decidable
- weights $\leq W$, no bound on states: decidable
- challenge problem: neither bound: decidable?
- challenge: give a completion algorithm for \mathbb{N}, \mathbb{A}

Example (Dieter Hofbauer): $a^{2} b^{2} \rightarrow b^{3} a^{3}$ over \mathbb{N}

