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Introduction

Motivation and Summary
I Weighted automata (a.k.a. matrix interpretations) have

become an essential tool for automated analysis of
termination and complexity of rewriting

I A weighted automaton A evaluates its input (tree, string) in
some semiring S, e.g., (N,0,+,1, ·), or
({−∞} ∪ N,−∞,max,0,+)

I If the valuation of A into well-founded (S, >)
is compatible with a rewrite system R,
then this proves termination,
and bounds derivational complexity, of→R

I R admits compatible valuation into
F = (N ∪ {+∞},+∞,min,0,max)
⇒→∗R preserves regularity of languages
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Introduction

Example 1 (F-weighted automaton)

I string rewriting system (SRS) R = {aa→ aba}
over alphabet Σ = {a,b}

I let us construct a N-weighted Σ-automaton A with
I A has a (a,2)-loop at state 1
I whenever there is a path p aa→ q with largest weight wl ,

then there is a path p aba→ q with largest weight wr < wl

I Hints:
I need two completion steps (add redex path)
I second step can be improved (re-use path, fewer states)

I this A accepts R∗(a∗), the R-many-step successors of a∗

I weights are actually from F = (N ∪ {+∞},min,max)
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Introduction

Example 2 (N-weighted automaton)

I classical automaton 1 2 3
a

a,b

a

a,b

accepts/rejects a word, defines a language

I weighted automaton 1 2 3
1 a:1

a:1,b:1

a:1

a:1,b:1

1

defines a valuation A : Σ∗ → N
by A(w) = sum of weights of w-labelled accepting paths,
weight of path = product of its edge weights
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Introduction

N-weighted Automata and Rewriting, Ex.

I automaton 1 2 3
1 a:1

a:1,b:1

a:1

a:1,b:1

1

A(w) = number of occurences of aa in w
I string rewriting system R = {aa→ aba}

w0 = abaaab →R abaabab = w1,
I automaton and rewriting: A(w0) = 2 > 1 = A(w1)

this holds in general, so R terminates
I this lecture: make the above precise, and extend
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I based on joint research (2002–present) with Jörg Endrullis,
Alfons Geser, Dieter Hofbauer, Hans Zantema.

I overview and full references:
J.W., Automatic Termination, RTA 2009.

I reference on weighted automata:
Manfred Droste, Werner Kuich, and Heiko Vogler (Eds.),
Handbook of Weighted Automata. Springer, 2009.

I slides for this course: http://www.imn.
htwk-leipzig.de/~waldmann/talk/17/isr/
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Basics Semirings and Matrices

Semirings
I Definition: S = (D,0,+,1, ·) is semiring:

I (D,0,+) is commutative monoid, (D,1, ·) is monoid
I distributivity ∀x , y , z ∈ D : x · (y + z) = x · y + x · z

and (x + y) · z = x · z + y · z
I ∀x ∈ D : x · 0 = 0 = 0 · x

I do not require:
I commutativity of multiplication (because of matrices)
I subtraction (ring), division (field)

I examples (used in this lecture)
I standard (natural) semiring (N,0,+,1, ·)
I arctic semiring A = ({−∞} ∪ N,−∞,max,0,+)
I fuzzy semiring (not a standard name)

F = ({−∞,+∞} ∪ N,+∞,min,−∞,max)
I examples (used elsewhere) (Ex.: fill in missing pieces)

I Booleans B = {0,1}, formal languages 2Σ∗
, relations 2U×U .
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Basics Semirings and Matrices

Matrices over Semirings

I set of indices (later: states of automaton) Q
I matrix m : Q ×Q → S, form a semiring
I Ex.: in A = ({−∞} ∪ N,−∞,max,0,+)(

0 5
−∞ 2

)
⊗
(

3 −∞
1 2

)
= ?

I row and column vector:
write as matrix 1×Q → S,Q × 1→ S

I Ex.:
(
0 5

)
⊗
(

3 0
−∞ 2

)
⊗
(

3
4

)
= ?

Johannes Waldmann (HTWK Leipzig) Weighted Automata and Rewriting Lecture 1 ISR Eindhoven 2017 8 / 22



Basics Weighted Automata

Weighted Automata — Def. (Pt. 1)
I S-weighted automaton A (alphabet Σ, states Q)
I graphical approach: directed graph on Q,

edge labels from Σ× S 1 2 3
1 a:1

a:1,b:1

a:1

a:1,b:1

1

I semantics defined via runs (paths)
I algebraic approach

transition matrices tA : Σ→ (Q ×Q → S)

t(a) =




1 1 0
0 0 1
0 0 1


 , t(b) =




1 0 0
0 0 0
0 0 1


 ,

I t(a) · t(b) · t(a) = weights of paths labelled aba
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Basics Weighted Automata

Weighted Automata — Full Definition

S-weighted automaton A with alphabet Σ, states Q:
I transition matrices tA : Σ→ (Q ×Q → S)

I final weight vector (row) fA : 1×Q → S,
I initial weight vector (column) iA : Q × 1→ S,

the semantics of A:
I define t∗A : Σ∗ → (Q ×Q → S)

by t∗A[x1, . . . , xn] = tA(x1) · . . . · tA(xn)

I the weight function computed by A
A : Σ∗ → S : w 7→ fA · t∗A(w) · iA

initial-final is confusing here (we want bottom-up in trees later)
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Basics Weighted Automata and Rewriting

Compatibility with Rewriting (Global)

I Def: (S, >)-weighted A
is (globally) compatible with relation→:
∀x , y : x → y ⇒ A(x) > A(y).

I Lemma: if (S, >) is well-founded
and A is compatible with→,
then→ is well-founded (terminating).

I this is both obivous and impractical
(how to check compatibility?)

I much more useful for rewrite relations→R:
I local compatibility (check rules R instead of→R)
I and monotonicity (extend to→R, apply contexts)
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Basics Weighted Automata and Rewriting

Monotonicity

I M a subset of matrices over S
closed w.r.t. multiplication (M∗ ⊆ M)

I with well-founded partial order >M

that is monotone w.r.t. left and right multiplication
∀x , y , z ∈ M : x >M y ⇒ xz >M yz ∧ zx >M zy
note: this implies 0 /∈ M

I example: n × n-matrices over N
M1 = {A | A1,1 ≥ 1 ∧ An,n ≥ 1}
A >1 B iff A1,n > B1,n and ∀i , j : Ai,j ≥ Bi,j
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Basics Weighted Automata and Rewriting

Monotonicity – Examples

I which of these are closed w.r.t. multiplication?
give the least restrictive monotone order for each.

I n × n-matrices over (N,0,+,1, ·)
I M2 = {A | A1,1 ≥ 1}
I M3 = {A | A1,n ≥ 1}
I M4 = {A | ∀i : ∃j : Ai,j ≥ 1}

I n × n-matrices over A = ({−∞} ∪ N,−∞,max,0,+)
I M5 = {A | A1,1 ≥ 0}
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Basics Weighted Automata and Rewriting

Local Compatibility

I Def: (S, >S)-weighted A admissible w.r.t. (M, >M):
I ∀x ∈ Σ : tA(x) ∈ M
I ∀m1,m2 ∈ M : m1 >M m2 ⇒ fA ·m1 · iA >S fA ·m2 · iA

I Def: A locally compatible with R:
∀(l , r) ∈ R : t∗A(l) >M t∗A(r)

I Thm: A admissible, A locally compatible with R
and (M, >) monotone
⇒ A globally compatible with→R

I Cor: . . . and (S, >) well-founded
⇒→R well-founded.
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Basics Weighted Automata and Rewriting

Example 1

I M = {A | A1,1 ≥ 1 ∧ An,n ≥ 1}
A > B iff A1,n > B1,n and ∀i , j : Ai,j ≥ Bi,j

f =
(
1 0 0

)
, i =

(
0 0 1

)T

I verify compatibility with {aa→ aba} for

t(a) =




1 1 0
0 0 1
0 0 1


 , t(b) =




1 0 0
0 0 0
0 0 1




I compute values for aaab → abaab → ababab
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Basics Weighted Automata and Rewriting

Example 1 – Remark

I use some CAS for calculations (e.g.,
http://maxima.sourceforge.net/)

I a : matrix([1,1,0],[0,0,1],[0,0,1]) ;
b : matrix([1,0,0],[0,0,0],[0,0,1]) ;
[ a . a , a . b . a ];

I [ 1 1 1 ] [ 1 1 0 ]
[ ] [ ]

(%o6) [[ 0 0 1 ], [ 0 0 1 ]]
[ ] [ ]
[ 0 0 1 ] [ 0 0 1 ]
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Basics Weighted Automata and Rewriting

Example 2

I M = {A | A1,1 ≥ 1 ∧ An,n ≥ 1}
A > B iff A1,n > B1,n and ∀i , j : Ai,j ≥ Bi,j

I determine missing coefficients such that

t(a) =

(
p q
0 1

)
, t(b) =

(
r s
0 1

)

is compatible with {ab → ba}
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Basics Weighted Automata and Rewriting

Example 2 – Remark

I use constraint language
http://smtlib.cs.uiowa.edu/standard.shtml,
and constraint solver (e.g.,
https://github.com/Z3Prover/z3)

I (set-logic QF_NIA)
(set-option :produce-models true)
(declare-fun P () Int) (declare-fun Q () Int)
(declare-fun R () Int) (declare-fun S () Int)
(assert (and (< 0 P) (<= 0 Q) (< 0 R) (<= 0 S)))
(assert (> (+ (* P S) Q) (+ (* R Q) S)))
(check-sat) (get-value (P Q R S))

I sat ((P 14) (Q 9) (R 11) (S 7))
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Basics Weighted Automata and Rewriting

Killer Example (2005): z086

I first termination proof of SRS/Zantema/z086
{a2 → bc,b2 → ac, c2 → ab}

a = b = c =


1 0 0 3 1
0 0 1 1 1
0 2 0 1 0
0 0 0 0 0
0 0 0 0 1







1 0 2 0 0
0 0 1 0 0
0 0 2 1 2
0 0 0 0 0
0 0 0 0 1







1 0 0 1 1
0 0 1 1 3
0 0 0 1 0
0 0 2 0 0
0 0 0 0 1




I found by solving the constraint system with a (hand written)
bit-blaster and http://minisat.se/
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Derivational Complexity

Derivational Complexity

I derivation height (of term t , w.r.t. relation→)
dh→(t) = sup{k | ∃t ′ : t →k t ′}

I derivational complexity (of relation→)
dc→(n) = sup{dh→(t) | size(t) ≤ n}

I examples, where→ is rewrite relation of SRS
I dcaa→aba linear

(aa)k →k (aba)k , number of occurrences of aa
I dcab→ba quadratic

akbk →∗ bkak , number of inversions a . . . b
I dcab→baa exponential

abk → bka2k
. Upper bound?
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Derivational Complexity

Growth of Matrices

I Def: growth gM of a set M of matrices
is k 7→ max{‖m1 · . . . ·mk‖ : mi ∈ M}
where ‖m‖ = maxi,j mi,j

I Def: growth gA of N-weighted automaton A
is growth of its transition matrices

I Prop: A compatible with→R implies dc→R ∈ O(dcA).
I Ex., compatible with {ab → ba}

growth
{(

2 0
0 1

)
,

(
1 1
0 1

)}
exponential
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Derivational Complexity

Polynomial Growth of Matrices

I Ex., compatible with {ab → ba}

growth








1 1 0
0 1 0
0 0 1


 ,




1 0 0
0 1 1
0 0 1





 quadratic

I Thm: each m ∈ M is upper triangular (below main diagonal:
0, on main diag: 0 or 1, above: ∗)
⇒ growth M polynomial.

I Thm: (each SCC of M contains no > 1 and no diamond)
⇐⇒ growth M polynomial.

I challenge problem (OPEN): polynomially growing matrix
interpretation for z086 = {a2 → bc,b2 → ac, c2 → ab}.
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