Termination

Johannes Waldmann HTWK Leipzig, Germany

September 18, 2015

Johannes Waldmann HTWK Leipzig, Germany

Termination

Termination

- ► abstract: a relation → on A is terminating iff each →-chain is finite
- ▶ which of these are terminating?
 > on N, > on Q_{≥0}, {(2x, 3x) | x ∈ N_{>0}}, {(2x, x) | x ∈ N_{>0}} ∪ {(2x + 1, 3x + 2) | x ∈ N_{>0}}
- concrete: → is the small-step semantics of some program in some model of computation examples: state transition, →_β, rewriting
- " \rightarrow is terminating" is:
 - undecidable in general
 - important for applications

Termination of Imperative Programs

while (x>0) { x-- ; y++ ; }

- computation state is \mathbb{N}^2 (slightly cheating)
- computation step is state transition $(x + 1, y) \rightarrow (x, y + 1)$ where $x \ge 0$
- terminates because 1st component decreases and is bounded from below (by 0)
- represent number x by term S^x(Z)
 e.g., 0 = Z, 2 = S(S(Z))
- represent program by *term rewriting system* $\{P(S(x), y) \rightarrow P(x, S(y))\}.$

Termination of Functional Programs

- > example program (first order)
 is term rewriting system
 m(x,y+1) = p(m(x,y),x); m(x,0) = 0;
 p(x+1,y) = 1 + p(x,y); p(0,y) = y;
- computation state is *tree* (term) containing nested function calls
 e.g., m(3, 2), p(3, p(3, m(3, 0)))
- consider all possible computations (all evaluation strategies)

TRS that are Not Programs

in (TRS for) (FO) functional programs:

- clear separation of *function* and *data* symbols (in previous ex.: function: *P*, *M*, data: *S*, *Z*)
- each left-hand side (lhs) of a rule has exactly one function symbol (at the top)

in term rewriting:

- Ihs can contain several "function" symbols
- ▶ this is motivated by transformation of programs (optimization), simplification of expressions, e.g., $x \land (y \lor z) \rightarrow (x \land y) \lor (x \land z)$,

Rewriting

- pattern replacement in context
 C[Iσ] → C[rσ] for rule (I, r)
 for: graphs, DAGs, terms (trees), strings (paths)
- term rewriting is a language for both computation (apply rules to data) ...
- ... and *deduction* (apply rules to statements and their proofs)
- e.g., for proving/deriving types of programs

String Rewriting

- a *string* is a finite sequence of symbols
- equiv.: . . . a term (tree) where all symbols are unary (all nodes have one child)
- string rewriting systems are actually well-known (rules of formal grammars of Chomsky type 0)
- rewrite system R ⊆ Σ* × Σ* defines rewrite relation →_R as {(*plq*, *prq*) | *p*, *q* ∈ Σ*, (*l*, *r*) ∈ R}
- example $R = \{(ab, ba)\}$, $aabb \rightarrow_R abab$.
- string rewriting is still hard (Turing complete)
- and illustrates a lot of term rewriting

Groups and String Rewriting

- represent groups by *relations* on *generators*
- e.g., the symmetry group of the rectangle: $\langle H, V \mid H^2 = V^2 = (HV)^2 = 1 \rangle$ (Klein's 4-group) (cf. Erlangen Program 1872)
- computations with group elements ⇒ computations on representations (= strings)
 e.g., VH = H²VH = H²VHV² = H(HV)²V = HV
- orient equations, obtain *semi-Thue* system (= string rewriting system) (named after Axel Thue 1863–1922, student of Sophus Lie 1842–1899, successor of Felix Klein 1849–1925 at Leipzig)

Examples for SRS Termination

- $R_1 = \{ab \rightarrow a\}$ is terminating since $u \rightarrow_{R_1} v$ implies $|u|_b > |v|_b$.
- *R*₂ = {*ab* → *ba*} is terminating since number of inversions

$$\begin{split} & I(u) = \#\{(p,q) \mid p < q, u_p = a, u_q = b\} \\ & \text{decreases: } u \rightarrow_{B_2} v \text{ implies } I(u) = 1 + I(v). \end{split}$$

►
$$R_3 = \{ab \rightarrow bba\}$$

long computations: $ab^k \rightarrow b^{2k}a$, $a^kb \rightarrow b^{2^k}a^k$
is terminating since ... (interpretation)

• $R_4 = \{ab \rightarrow b^2 a^2\}$ is non-terminating

Termination Competitions

- since 2003, yearly, for programs with spec:
- input: rewrite system R, out: YES (R terminates), NO, MAYBE/timeout

extensions:

- variants of rewriting (strategies, modulo AC,...)
- programming languages (Haskell,Prolog,Java,C)
- complexity (derivation lengths)
- certification (of proofs of (non) termination) termcomp 2015:
 - ▶ 10 participants, 10⁴ problems, 10⁷ sec (CPU)
 - 10 h (wall), http://www.starexec.org/

Well-founded Monotone Algebras

- Σ-algebra [·] with domain D maps each letter c ∈ Σ to a function [c] : D → D and the string u₁...u_n to [u₁](...([u_n](0))...)
- assume well-founded (terminating) order > on D
- [·] is monotone if $\forall c \in \Sigma, x, y \in D : x > y \Rightarrow [c](x) > [c](y).$
- [·] is *compatible* with *R* if $\forall (I, r) \in R, x \in D : [I](x) > [r](x)$.
- Thm (Manna and Ness): R terminating \leftarrow R admits compatible well-founded monotone alg.
- Ex: for $\{ab \rightarrow ba\}$: [a](x) = 2x, [b](x) = x + 1. for $\{ab \rightarrow bba\}$, take ...

Johannes Waldmann HTWK Leipzig, Germany

Totally Ordered Algebras

- ▶ for algebras over $(\mathbb{N}, >)$, always $[x] \ge x$. Proof: trivially $[0] \ge 0$, $x + 1 > x \Rightarrow [x + 1] > [x] \ge x$.
- {aa → aba} is terminating, (count occurences of aa) but does not admit compatible algebra over (N,>).

A Non-Totally Ordered Alg. of Vectors

- domain $D_k = \mathbb{N}^{k-1} \times \mathbb{N}_{>0}$, well-founded order $x > y \iff x_1 > y_1 \land x_2 \ge y_2 \land \cdots \land x_k \ge y_k$
- interpret letter c by matrix [c] ∈ N^{k×k} must map D_k into D_k, hence [c]_{k,k} > 0 must be monotone, hence [c]_{1,1} > 0. compatible with (I, r) if [I] ≥ [r] ∧ [I]_{1,k} > [r]_{1,k}

$$[a] = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, [b] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, [aa] = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, [aba] = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

Linear Interpretations as Matrices

- ▶ had [a](x) = 3x, [b](x) = x + 1 for $\{ab \to bba\}$
- ▶ this can be written as $[a] = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, [b] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. then $[ab] = \begin{pmatrix} 3 & 3 \\ 0 & 1 \end{pmatrix}, [bba] = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$.
- for $\{ab \rightarrow baa\}$, there is no linear int. over $(\mathbb{N}, >)$
- ▶ but we can take $[a] = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, [b] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$ then $[ab] = \begin{pmatrix} 1 & 3 \\ 0 & 3 \end{pmatrix}, [bba] = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}.$

What a Difference an a Makes

decide termination of

•
$$R_1 = \{ ba \rightarrow acb, bc \rightarrow abb \},\$$

•
$$R_2 = \{ba \rightarrow acb, bc \rightarrow cbb\},\$$

•
$$R_3 = \{ba \rightarrow aab, bc \rightarrow cbb\}.$$

$\{ba ightarrow aab, bc ightarrow cbb\}$

- we have $b^k a \rightarrow^* a^{2^k} b^k$ and $bc^k \rightarrow^* c^k b^{2^k}$
- from bc^ka, doubly exponential derivation lengths
- $ightarrow \Rightarrow$ there is no compatible matrix interpretation
- $\blacktriangleright [a]_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, [b]_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, [c]_1 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ $[a]_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, [b]_2 = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, [c]_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$ if $u \rightarrow_{bc \rightarrow cbb} v$, then $[u]_1 > [v]_1$ if $u \rightarrow_{ba \rightarrow aab} v$, then $[u]_1 = [v]_1 \wedge [u]_2 > [v]_2$ • $[u] = ([u]_1, [u]_2)$ is lexicographically decreasing. the lexicographic product of wf orders is wf. • $[\cdot]_1$ "removes rule" $bc \rightarrow cbb$ (cf. Relative Termination, Alfons Geser 199?)

$\{ba \rightarrow acb, bc \rightarrow cbb\}$

- $b^k a \rightarrow^* a(cb)^k \rightarrow^* ac^k b^{2^k-1}$
- $b^2 a^k \rightarrow^* \dots$ multiply exponential
- admits no lexicographic matrix proof since each rule is applied more that exponentially often

prove termination by showing $\rightarrow \subseteq >_{a,c,b}$ where

•
$$u >_{x,y,...} v$$
 iff $u = u_0 x u_1 x ... x u_m$,
 $v = v_0 x v_1 x ... x v_n$ with $x \notin u_i, x \notin v_i$
and $[u_0, ..., u_m] > [v_0, ..., v_n]$
length-lexicographically w.r.t. $>_{y,...}$

 this is the lexicographic path order (Nachum Dershowitz, 198?) for precedence a > c > b.

Johannes Waldmann HTWK Leipzig, Germany

$\{ba \rightarrow acb, bc \rightarrow abb\}$

- ▶ simple form of non-termination is *loop* $u \rightarrow^+ puq$
- loops can be found by *explicit enumeration*

we show here an *implicit* loop detector:

- ▶ observe $\forall x \in \{a, b, c\}$: $bx \rightarrow^* \phi(x)b$ where $\phi : a \mapsto ac, b \mapsto b, c \mapsto ab$.
- hence, $\forall k : b^k x \rightarrow^* \phi^k(x) b^k$
- find x and k such that φ^k(x) contains b^kx as scattered subword ⇒ loop
- Parikh matrix of ϕ is $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$, P has

eigenvalue > 1, entries in P^k grow exponentially, claim follows.

Johannes Waldmann HTWK Leipzig, Germany

Where to Go From Here

Termination

- strings \rightarrow terms, terms \rightarrow programs
- matrices over N → matrices over exotic semirings: (max,plus), (min,plus), (min,max)
- constraint programming for finding matrices
 Complexity
 - each termination proof method bounds derivation lengths (e.g., matrices ⇒ exponential)

 special interest in polynomial bounds there's much more to Rewriting: equational reasoning (completion), higher order, graphs,...