Matrix Interpretations on Polyhedral Domains

Johannes Waldmann (HTWK Leipzig)

June 30, 2015

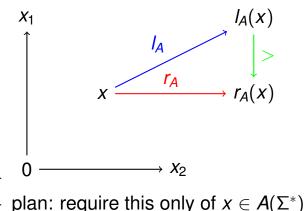
Matrix Interpretations

- ► domain \mathbb{N}^d , wellfounded $(>) := (>) \times (\geq)^{d-1}$
- linear Σ -algebra A on $(\mathbb{N}^d, >)$:
 - $\epsilon_A \in \mathbb{N}^d$,
 - for each $f \in \Sigma$ have $f_A : x \mapsto F_0 + F_1 \cdot x$
- if for each *f*, topleft(*F*₁) > 0,
 then *A* is monotone: *x* > *y* implies *f*_A(*x*) > *f*_A(*y*)
- A is compatible with rule $l \to r$: $\forall x \in \mathbb{N}^d : l_A(x) > r_A(x)$
- ► if set of rules *R* admits a compatible monotone linear algebra, then *R* is terminating.

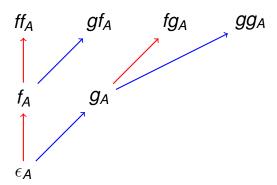
We want to improve on " $\forall x \in \mathbb{N}^{d}$ " in compatibility

Visualizing Compatibility

• A is compatible with $l \rightarrow r$: $\forall x \in \mathbb{N}^d : l_A(x) > r_A(x)$



Visualizing Reachability



- $T = A(\Sigma^*)$
- ► all "redex triangles" sit on points in this tree
- ▶ find polyhedral domain $D \supseteq T$ verify $\forall x \in D : I_A(x) > r_A(x)$

Polyhedral Domains

- standard method uses domain (N^d, >), now restrict to some subset D ⊂ N^d defined by a conjunction of linear inequalities
- D contains the weight vectors reachable by A behaviour of transitions of A outside D is ignored
- relaxed proof obligations for compatibility
 ∀x ∈ D : [/](x) > [r](x)
 additional proof obligations
 D ≠ Ø, ∀a ∈ Σ : [a](D) ⊆ D
- get more and different termination proofs
- idea appeared in: Lucas and Meseguer AISC'14 new: certification, implementation, extensions

Polyhedral Constraints, Example

Prove termination of $R = \{ fg \rightarrow ff, gf \rightarrow gg \}$. Use domain $D = \{ (x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_3 \ge x_2 + 1 \}$.

 $\begin{array}{ll} [f](x_1,x_2,x_3)=&(x_1+2x_2+1,0,x_3+1)\\ [g](x_1,x_2,x_3)=&(x_1&,x_3,x_3+1)\\ & [fg](x)=&(x_1+&2x_3+1,0,x_3+2),\\ & [ff](x)=&(x_1+2x_2+&2,0,x_3+2). \end{array}$

Now $\forall x \in D : [fg](x) > [ff](x)$, despite 2. $x_1 + 2x_3 + 1 \ge x_1 + (2x_2 + 2) + 1 > x_1 + 2x_2 + 2$

Interpret. with Polyhedral Constraints A polyhedrally constrained matrix interpret. contains:

- the interpretation, $f_A(x_1,...) = F_0 + \sum F_i x_i$
- ► the domain, given by $C_A \in \mathbb{Q}^{c \times d}, B_A \in \mathbb{Q}^{c \times 1}$, as $D = \{x \mid x \ge 0, Cx + B \ge 0\} \subseteq \mathbb{N}^d$

In the example, d = 3, c = 1, C = (0, -1, 1), B = -1.

to use it for termination of rewriting, we show:

- domain is non-empty,
- ▶ interpretation respects the domain,
- interpretation is compatible with rules.

for each of these, we use *certificates*

Polyhedral Constraints: Domains

Def: A respects the domain if $f_A : D^k \to D$. This is certified by giving

- for each letter f, with interpretation $f_A(x_1,...) = F_0 + \sum F_i x_i$,
- matrices $W_1, \ldots, W_k \in \mathbb{Q}_{\geq 0}^{c \times c}$ with $CF_0 + B \geq (\sum_i W_i)B$, $\forall 1 \leq i \leq k : CF_i \geq W_iC$

example: $D = \{(x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_3 \ge x_2 + 1\},\[f](x_1, x_2, x_3) = (x_1 + 2x_2 + 1, 0, x_3 + 1)\]$ take $W_1 = 0$

Polyhedral Constraints: Compatibility

Compatibility of A w.r.t. rule $(I \rightarrow r)$ with $|\operatorname{Var}(I) \cup \operatorname{Var}(r)| = k$ where $([I]_A - [r]_A)(x_1, \dots, x_k) = \Delta_0 + \sum_i \Delta_i x_i$,

is certified by matrices $U_1, \ldots, U_k \in \mathbb{Q}^{d \times c}_+$, such that $\forall i : \Delta_i \ge U_i C$ and $\Delta_0 > \sum_i U_i B$

example:
$$D = \{ \vec{x} \in \mathbb{N}^3 \mid -x_2 + x_3 - 1 \ge 0 \},$$

 $[f](\vec{x}) = (x_1 + 2x_2 + 1, 0, x_3 + 1),$
 $[g](\vec{x}) = (x_1, x_3, x_3 + 1),$
 $[fg - ff](\vec{x}) = (-2x_2 + 2x_3 - 1, 0, 0)$
take $U_1 = (2, 0, 0)^T.$

Polyhedral Constraints: Combined

to prove termination of rewriting system *R*, determine

- matrix interpretation (weighted automaton)
- polyhedral domain (linear inequalities)

as solution of a constraint system for validity of certificates for

- non-emptiness of the domain
- respecting the domain
- compatibility with rules

implemented in termination prover Matchbox2015.

Completeness of Certificates

- Thm: automaton respects domain, is *R*-compatible \iff certificates exist.
 - ► Correctness ("⇐") is easily verified.
 - Completeness ("⇒") follows from (inhomogenous) Farkas' Lemma.
- The Lemma (in one of many versions) says
 - A linear inequalitiy / is implied by a system S of linear inequalities
 - \iff *I* \ge some positive linear combination of *S*.

Derivational Complexity

- by restricting the set of matrices allowed in interpretations (e.g., upper triangular), one restricts the growth of matrix products (e.g., to polynomial) and obtains bounds on derivational complexity
- polyhedral domain restriction is orthogonal to this idea, combination is sometimes helpful
- ex. $R = \{fg \rightarrow ff, gf \rightarrow gg\}$: given automaton is upper triangular, this proves dc(R) quadratic, this was known, but by different method (root labelling)

Dependency Pairs and Polyhedral D.

... can be easily combined. — For Usable Rules:

- ▶ need C_E -termination: add fresh symbol C, interpretation should be compatible with $C(x, y) \rightarrow x, C(x, y) \rightarrow y$,
- ► domain *D* must verify: $x, y \in D \Rightarrow \sup(x, y) \in D$, this is not always the case, e.g., $D = \{(x_1, x_2) \mid 0 \le x_1, 0 \le x_2, x_1 + x_2 \le 2\}$ $\sup((2, 0), (0, 2)) = (2, 2) \notin D$
- sufficient criterion: at most one coeff. < 0
- ► could use something better here

Results, Discussion

- method is correct, implementation works
- found some termination and complexity proofs where no plain matrix proof is known.
- challenge: improve implementation (improve constraint solver, better bit-blasting)
- challenge: could this method prove quadratic derivational complexity of z086?
 {a² → bc, b² → ac, c² → ab}
- open: extend method to other (exotic) semirings, using results from tropical geometry.
- announcements: ISR 2015, termCOMP

International School on Rewriting

http://nfa.imn.htwk-leipzig.de/ISR2015/

- ► ISR 2015 at HTWK Leipzig, August 10-14.
- basic track: full introductory course, advanced track: 8 short courses
- you can still register your students do it NOW! (early registration deadline: July 1)

Johannes Waldmann (HTWK Leipzig) Matrix Interpretations on Polyhedral Domains

Termination Competition 2015

http://termination-portal.org/

registration of solvers: July 1

- submission of new TPDB problems: July 7
- updates of solvers: July 15
- competition runs: August 5/6 (during CADE)

informal meeting for competitors: tonight