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Matrix Interpretations
I domain Nd , wellfounded (>) := (>)× (≥)d−1

I linear Σ-algebra A on (Nd , >):
I εA ∈ Nd ,
I for each f ∈ Σ have fA : x 7→ F0 + F1 · x

I if for each f , topleft(F1) > 0,
then A is monotone: x > y implies fA(x) > fA(y)

I A is compatible with rule l → r :
∀x ∈ Nd : lA(x) > rA(x)

I if set of rules R admits a compatible monotone
linear algebra, then R is terminating.

We want to improve on “∀x ∈ Nd ” in compatibility
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Visualizing Compatibility
I A is compatible with l → r :
∀x ∈ Nd : lA(x) > rA(x)

I 0 x2

x1

x rA(x)

lA(x)

lA

rA

>

I plan: require this only of x ∈ A(Σ∗)
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Visualizing Reachability

I T = A(Σ∗) εA

fA gA

ffA gfA fgA ggA

I all “redex triangles” sit on points in this tree
I find polyhedral domain D ⊇ T

verify ∀x ∈ D : lA(x) > rA(x)

Johannes Waldmann (HTWK Leipzig) Matrix Interpretations on Polyhedral Domains June 30, 2015 4 / 16

Polyhedral Domains
I standard method uses domain (Nd , >),

now restrict to some subset D ⊂ Nd

defined by a conjunction of linear inequalities
I D contains the weight vectors reachable by A

behaviour of transitions of A outside D is ignored
I relaxed proof obligations for compatibility
∀x ∈ D : [l ](x) > [r ](x)
additional proof obligations
D 6= ∅, ∀a ∈ Σ : [a](D) ⊆ D

I get more and different termination proofs
I idea appeared in: Lucas and Meseguer AISC’14

new: certification, implementation, extensions
Johannes Waldmann (HTWK Leipzig) Matrix Interpretations on Polyhedral Domains June 30, 2015 5 / 16

Polyhedral Constraints, Example
Prove termination of R = {fg → ff ,gf → gg}.
Use domain D = {(x1, x2, x3) ∈ N3 | x3 ≥ x2 + 1}.

[f ](x1, x2, x3) = (x1 + 2x2 + 1,0, x3 + 1)

[g](x1, x2, x3) = (x1 , x3, x3 + 1)

[fg](x) = (x1 + 2x3 + 1 ,0, x3 + 2),

[ff ](x) = (x1 + 2 x2 + 2 ,0, x3 + 2).

Now ∀x ∈ D : [fg](x) > [ff ](x), despite 2 .
x1 + 2x3 + 1 ≥ x1 + (2x2 + 2 ) + 1 > x1 + 2x2 + 2
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Interpret. with Polyhedral Constraints
A polyhedrally constrained matrix interpret. contains:

I the interpretation, fA(x1, . . . ) = F0 +
∑

Fixi

I the domain, given by CA ∈ Qc×d ,BA ∈ Qc×1,
as D = {x | x ≥ 0,Cx + B ≥ 0} ⊆ Nd

In the example, d = 3, c = 1,C = (0,−1,1),B = −1.

to use it for termination of rewriting, we show:
I domain is non-empty,
I interpretation respects the domain,
I interpretation is compatible with rules.

for each of these, we use certificates
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Polyhedral Constraints: Domains
Def: A respects the domain if fA : Dk → D.
This is certified by giving

I for each letter f , with interpretation
fA(x1, . . . ) = F0 +

∑
Fixi ,

I matrices W1, . . .Wk ∈ Qc×c
≥0 with

CF0 + B ≥ (
∑

i Wi)B,
∀1 ≤ i ≤ k : CFi ≥WiC

example: D = {(x1, x2, x3) ∈ N3 | x3 ≥ x2 + 1},
[f ](x1, x2, x3) = (x1 + 2x2 + 1,0, x3 + 1)
take W1 = 0
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Polyhedral Constraints: Compatibility
Compatibility of A w.r.t. rule (l → r)
with |Var(l) ∪ Var(r)| = k
where ([l ]A − [r ]A)(x1, . . . , xk) = ∆0 +

∑
i ∆ixi ,

is certified by matrices U1, . . . ,Uk ∈ Qd×c
+ ,

such that ∀i : ∆i ≥ UiC and ∆0 >
∑

i UiB

example: D = {~x ∈ N3 | −x2 + x3 − 1 ≥ 0},
[f ](~x) = (x1 + 2x2 + 1,0, x3 + 1),
[g](~x) = (x1, x3, x3 + 1),
[fg − ff ](~x) = (−2x2 + 2x3 − 1,0,0)
take U1 = (2,0,0)T .
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Polyhedral Constraints: Combined
to prove termination of rewriting system R,
determine

I matrix interpretation (weighted automaton)
I polyhedral domain (linear inequalities)

as solution of a constraint system for validity of
certificates for

I non-emptiness of the domain
I respecting the domain
I compatibility with rules

implemented in termination prover Matchbox2015.
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Completeness of Certificates
Thm: automaton respects domain, is R-compatible
⇐⇒ certificates exist.

I Correctness (“⇐”) is easily verified.
I Completeness (“⇒”) follows from

(inhomogenous) Farkas’ Lemma.

The Lemma (in one of many versions) says
I A linear inequalitiy I is implied by a system S of

linear inequalities
I ⇐⇒ I ≥ some positive linear combination of S.
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Derivational Complexity
I by restricting the set of matrices allowed in

interpretations (e.g., upper triangular),
one restricts the growth of matrix products (e.g.,
to polynomial)
and obtains bounds on derivational complexity

I polyhedral domain restriction is orthogonal to
this idea, combination is sometimes helpful

I ex. R = {fg → ff ,gf → gg}: given automaton is
upper triangular, this proves dc(R) quadratic,
this was known, but by different method (root
labelling)
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Dependency Pairs and Polyhedral D.
. . . can be easily combined. — For Usable Rules:

I need CE -termination: add fresh symbol C,
interpretation should be compatible with
C(x , y)→ x ,C(x , y)→ y ,

I domain D must verify: x , y ∈ D ⇒ sup(x , y) ∈ D,
this is not always the case, e.g.,
D = {(x1, x2) | 0 ≤ x1,0 ≤ x2, x1 + x2 ≤ 2}
sup((2,0), (0,2)) = (2,2) /∈ D

I sufficient criterion: at most one coeff. < 0
I could use something better here
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Results, Discussion
I method is correct, implementation works
I found some termination and complexity proofs

where no plain matrix proof is known.
I challenge: improve implementation

(improve constraint solver, better bit-blasting)
I challenge: could this method prove quadratic

derivational complexity of z086?
{a2 → bc,b2 → ac, c2 → ab}

I open: extend method to other (exotic) semirings,
using results from tropical geometry.

I announcements: ISR 2015, termCOMP
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International School on Rewriting
http://nfa.imn.htwk-leipzig.de/ISR2015/

I ISR 2015 at HTWK Leipzig, August 10-14.
I basic track: full introductory course,

advanced track: 8 short courses
I you can still register your students — do it NOW!

(early registration deadline: July 1)
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Termination Competition 2015
http://termination-portal.org/

I registration of solvers: July 1

I submission of new TPDB problems: July 7
I updates of solvers: July 15
I competition runs: August 5/6 (during CADE)

I informal meeting for competitors: tonight
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