

$\begin{array}{l} \label{eq:point_product} \textbf{Polyhedral Constraints: Compatibility}\\ \textbf{Compatibility of } A w.r.t. rule (l \rightarrow r)\\ with Var(l) \cup Var(r) = k\\ where ([l]_A - [r]_A)(x_1, \ldots, x_k) = \Delta_0 + \sum_i \Delta_i x_i,\\ \textbf{is certified by matrices } U_1, \ldots, U_k \in \mathbb{Q}_+^{d \times c},\\ \textbf{such that } \forall i : \Delta_i \geq U_i C \text{ and } \Delta_0 > \sum_i U_i B\\ \textbf{example: } D = \{\vec{x} \in \mathbb{N}^3 \mid -x_2 + x_3 - 1 \geq 0\},\\ [f](\vec{x}) = (x_1 + 2x_2 + 1, 0, x_3 + 1),\\ [g](\vec{x}) = (x_1, x_3, x_3 + 1),\\ [fg - ff](\vec{x}) = (-2x_2 + 2x_3 - 1, 0, 0)\\ \textbf{take } U_1 = (2, 0, 0)^T. \end{array}$	 Polyhedral Constraints: Combined to prove termination of rewriting system <i>R</i>, determine matrix interpretation (weighted automaton) polyhedral domain (linear inequalities) as solution of a constraint system for validity of certificates for non-emptiness of the domain respecting the domain compatibility with rules implemented in termination prover Matchbox2015.
Completeness of Certificates	Derivational Complexity
 Thm: automaton respects domain, is <i>R</i>-compatible ⇔ certificates exist. Correctness ("⇐") is easily verified. Completeness ("⇒") follows from (inhomogenous) Farkas' Lemma. The Lemma (in one of many versions) says A linear inequalitiy <i>I</i> is implied by a system <i>S</i> of linear inequalities ⇔ <i>I</i> ≥ some positive linear combination of <i>S</i>. 	 by restricting the set of matrices allowed in interpretations (e.g., upper triangular), one restricts the growth of matrix products (e.g., to polynomial) and obtains bounds on derivational complexity polyhedral domain restriction is orthogonal to this idea, combination is sometimes helpful ex. R = {fg → ff, gf → gg}: given automaton is upper triangular, this proves dc(R) quadratic, this was known, but by different method (root labelling)
Johannes Waldmann (HTWK Leipzig) Matrix Interpretations on Polyhedral Domains June 30, 2015 11 / 16	Johannes Waldmann (HTWK Leipzig) Matrix Interpretations on Polyhedral Domains June 30, 2015 12 / 16
Dependency Pairs and Polyhedral D. can be easily combined. — For Usable Rules: • need C_E -termination: add fresh symbol C , interpretation should be compatible with $C(x, y) \rightarrow x, C(x, y) \rightarrow y$, • domain D must verify: $x, y \in D \Rightarrow \sup(x, y) \in D$, this is not always the case, e.g., $D = \{(x_1, x_2) \mid 0 \le x_1, 0 \le x_2, x_1 + x_2 \le 2\}$ $\sup((2, 0), (0, 2)) = (2, 2) \notin D$ • sufficient criterion: at most one coeff. < 0 • could use something better here	 Besults, Discussion method is correct, implementation works found some termination and complexity proofs where no plain matrix proof is known. challenge: improve implementation (improve constraint solver, better bit-blasting) challenge: could this method prove quadratic derivational complexity of z086? {a² → bc, b² → ac, c² → ab} open: extend method to other (exotic) semirings, using results from tropical geometry. announcements: ISR 2015, termCOMP
 International School on Rewriting http://nfa.imn.htwk-leipzig.de/ISR2015/ ISR 2015 at HTWK Leipzig, August 10-14. basic track: full introductory course, advanced track: 8 short courses you can still register your students — do it NOW! (early registration deadline: July 1) 	 Termination Competition 2015 http://termination-portal.org/ registration of solvers: July 1 submission of new TPDB problems: July 7 updates of solvers: July 15 competition runs: August 5/6 (during CADE) informal meeting for competitors: tonight