Matrix Interpretations N-weighted Finite Automata with Polyhedral Constraints

Johannes Waldmann (HTWK Leipzig)

June 23, 2015

Automated Analysis of Termination and Complexity

- \triangleright ... for the computation model of (term or string) *rewriting*
- \triangleright applications: (first order) functional programs, RNA transformations
- \triangleright we use $(\mathbb{N}, +, \cdot)$ -weighted automata, defines an evaluation algebra over N *Q*(*A*)
- \triangleright determine transitions (weights) of automaton by solving a constraint system
- ► *new feature: restrict the domain* to $D \subset \mathbb{N}^{Q(A)}$

String Rewriting

- \blacktriangleright alphabet Σ, set of rules $R ⊆ Σ^* × Σ^*,$
- \blacktriangleright defines relation (one-step *R*-rewriting) $\mu \rightarrow R$ *v* ⇐⇒ ∃(*l*, *r*) ∈ *R*, *p*, *q* ∈ Σ ∗ : *u* = *plq* ∧ *prq* = *v*.
- \triangleright *R* is syntax (program), \rightarrow_R^* is semantics (computation)
- **Examples:** $R_{\text{bubble sort}} = \{ba \rightarrow ab\},\$ $R_{exponential} = \{ab \rightarrow baa\}, R_2 = \{aa \rightarrow aba\}$
- \triangleright related: semi-Thue-systems, Markov algorithms, Turing machines, formal grammars

Termination, and How to Prove It

- \triangleright Def: *R* is strongly normalizing (or: (uniformly) terminating), written SN(*R*) iff there is no infinite \rightarrow _R-chain.
- ► Examples: SN($\{ab \rightarrow ba\}$), \neg SN($\{ab \rightarrow b^2a^2\}$)
- \triangleright SN is undecidable (cf. TM halting problem)

methods to prove termination

- \triangleright syntactical (e.g., consider overlaps between parts of rules)
- ► (this talk) *semantical* (assign some meaning to the objects that are being rewritten)

Goal: *automate* the methods (and their *certification*)

Automated Termination Analysis

Why? Want tools that help in . . .

- \triangleright analysis of source/machine code (in IDE/in OS)
- \triangleright completion of equational specifications
- \triangleright theorem proving (check that induction is well-founded)

How to measure progress? Compete!

- \triangleright annual Termination Competitions [http://termination-portal.org/wiki/](http://termination-portal.org/wiki/Termination_Competition_2015) [Termination_Competition_2015](http://termination-portal.org/wiki/Termination_Competition_2015)
- \triangleright termination provers run on benchmarks (last year, 2.7 \cdot 10⁴ "job pairs", 4 \cdot 10 6 seconds CPU)

Interpretations

- \triangleright Def: partial order $(D,>)$ is *well-founded*: has no infinite $>$ -chains
- ^I Def: interpretation *i* : Σ[∗] → (*D*, >) is *compatible* with rewrite system *R* if $u \rightarrow_R v \Rightarrow i(u) > i(v)$.
- \triangleright *R* admits compatible interpretation into some wf domain \iff SN(*R*)
- \blacktriangleright note: " \Leftarrow " is trivial, take *i* = id and *D* = (Σ^{*}, \rightarrow \noverline{R})
- **Example:** for $R_{\text{bubblesort}} = \{ba \rightarrow ab\}$, count $inversions: i(w) = |\{(j, k) | j < k \wedge w_j > w_k\}|$ then $u \rightarrow_R v \Rightarrow i(u) - 1 = i(v)$
- **Example:** for ${aa \rightarrow aba}$...?

Monotone Algebras Σ-algebra *A* on wf (*D*, >)

- \blacktriangleright ϵ _{*A*} ∈ *D*, and for each f ∈ $Σ$, a function f _{*A*} : *D* → *D*
- ^I *A* defines an interpretation *i^A* : Σ[∗] → *D*
- ► Def: *A* is *monotone* iff $\forall f$ ∈ ∑ : $\forall x, y \in D$: $x > y \Rightarrow f_A(x) > f_A(y)$
- ► Def: *A* is *compatible with R* if \forall (*l*, *r*) \in *R*, \forall *x* \in *D* : *l*_{*A*}(*x*) > *r*_{*A*}(*x*).
- \triangleright Thm: *R* admits a compatible monotone algebra over a well-founded domain $\iff SN(R)$. note: " \Leftarrow " is still trivial
- \blacktriangleright "number of inversions" is not an algebra (over N)

Linear Algebra

domain (N *d* , >)

 \triangleright with $\vec{x} > \vec{y} := x_1 > y_1 \land x_2 \ge y_2 \land \dots \land x_d \ge y_d$ is well-founded

example: 1st comp. counts number of *aa* factors: $[a](x_1, x_2) = (x_1 + x_2, 1), [b](x_1, x_2) = (x_1, 0)$

- \blacktriangleright is monotone: all coeffs. > 0 , coeff. of x_1 in 1st comp. is > 0
- \triangleright is compatible with $R = \{aa \rightarrow aba\}$: $[aa](x_1, x_2) = (x_1 + x_2 + |1|, 1),$ $[aba|(x_1, x_2) = (x_1 + x_2, 0)$

this algebra is the algebra of a weighted automaton

Algebras of Weighted Automata

- ► D-weighted FA A
	- \blacktriangleright alphabet Σ , states Q
	- \blacktriangleright initial weight vector *I* : D^Q
	- \blacktriangleright transitions $\mathcal{T}:\Sigma\to D^{Q\times Q}$
	- \blacktriangleright final weigth vector F : D^G
- \triangleright its weight function: $A: \Sigma^* \to D: w \mapsto F \cdot T(w) \cdot I$
- \blacktriangleright its algebra (with carrier D^Q): given by ${\mathcal T}$ and *I*
- \triangleright *D* could be any semiring (because we need properties of matrix multiplication)
- If here, we restrict to $D = (\mathbb{N}, +\cdot, 0, 1)$, *I* picks the initial state, *F* picks the final state

Algebras from Automata, Example
\n
$$
\Sigma: 1
$$

WFA and Rewriting

goal: the algebra of a WFA *A* is well-founded, monotone, and compatible with *R*

- ⇒ *A* is a certificate of termination of *R*
	- \blacktriangleright wf: use domain $(\mathbb{N}^d,>)$ as defined earlier
	- monotone (on the left): for each *a*, $T(a)_{1,1} \geq 1$
	- \triangleright compatible with R :

 $T(l)_{1,d} > T(r)_{1,d}$ and for each $(l, r) \in R$: $T(l) \geq T(r)$ (point-wise), and monotone on the right: $T(a)$ _{d d} > 1.

From Strings to Terms

- \triangleright interpret *k*-ary letter *f* by $f_{\mathcal{A}}:(\vec{x_1},\ldots,\vec{x_k})\mapsto \vec{F_0}+\sum_i \vec{F_i}\cdot\vec{x_i}$ where F_0 is vector, F_1, \ldots are square matrices,
- \triangleright this is a restricted form of multi-linear functions. closed w.r.t. composition (needed for interpretation of terms with variables)
- \triangleright ∀*i* > 1 : $(F_i)_{11}$ ≥ 1 implies *monotonicity*,
- \triangleright for rule $l \rightarrow r$, compute $[I](\vec{x_1}, \ldots) = L_0 + \sum_i L_i \cdot \vec{x_i}, [r](\vec{x_1}, \ldots) = R_0 + \ldots$ then $\forall i > 0 : L_i > R_i$ (component-wise) and $(L_0)_1 > (R_0)_1$ implies *compatibility*

Constraints for Unknown Automata

- \blacktriangleright "monotone, and compatible with R " is a *constraint system* for the transition matrices
- \triangleright e.g., from $R = \{ba \rightarrow ab\}$ with $[a](x) = a_0 + a_1x$, $[b](x) = b_0 + b_1x$ obtain $a_0 \ge 0$ $0, a_1 \geq 1, b_0 \geq 0, b_1 \geq 1, b_1 a_0 + b_0 > a_1 b_0 + a_0$ \triangleright write constraint system in suitable form

(declare-fun P () Int) (declare-fun Q () Int) (declare-fun R () Int) (declare-fun S () Int) (assert (and $(< 0 \text{ P})$ $(< = 0 \text{ Q})$ $(< 0 \text{ R})$ $(< = 0 \text{ S})$ $(\text{assert} (> (+ (+ + P S) \text{Q}) (+ (+ + R Q) \text{S})))$

constraint solver searches satisfying assignment

 \triangleright this is (now) a standard method in automated termination

Matrix Interpretation Success Story Termination of $\{a^2 \rightarrow bc, b^2 \rightarrow ac, c^2 \rightarrow ab\}$ follows from this automaton:

(Hofbauer, Waldmann, 2006)

Polyhedral Domains

(this is the point of the RTA'15 paper)

- \blacktriangleright standard method uses domain $(\mathbb{N}^d,>)$, now restrict to some subset $D \subset \mathbb{N}^d$ defined by a conjunction of linear inequalities
- ► *D* contains the weight vectors reachable by A
- ► behaviour of transitions of A outside D is ignored
- \triangleright relaxed proof obligations for compatibility ∀*x* ∈ *D* : [*l*](*x*) > [*r*](*x*)
- \triangleright additional proof obligations $D \neq \emptyset$, $\forall a \in \Sigma : [a](D) \subseteq D$
- ► get *more* and *different* termination proofs

Polyhedral Constraints, Example

Prove termination of $R = \{fg \rightarrow ff, gf \rightarrow gg\}$. Use domain $D = \{(x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_3 \ge x_2 + 1\}.$

 $[f](x_1, x_2, x_3) = (x_1 + 2x_2 + 1, 0, x_3 + 1)$ $[g](x_1, x_2, x_3) = (x_1, x_3, x_3 + 1)$ $[fg](x) = (x_1 + 2x_3 + 1, 0, x_3 + 2),$ $[ff](x) = (x_1 + 2x_2 + 2)$, 0, $x_3 + 2$).

Now $\forall x \in D$: $[fq](x) > [ff](x)$, despite 2. $x_1 + 2x_3 + 1 \ge x_1 + (2x_2 + |2|) + |1| > x_1 + 2x_2 + 2$

Interpret. with Polyhedral Constraints A polyhedrally constrained matrix interpret. contains:

- \blacktriangleright the interpretation, $f_\mathcal{A}(x_1, \dots) = F_0 + \sum F_i x_i$
- ► the domain, given by $C_A \in \mathbb{Q}^{c \times d}, B_A \in \mathbb{Q}^{c \times 1},$ a s $D = \{x \mid x \geq 0, \overline{C}x + \overline{B} \geq 0\} \subseteq \mathbb{N}^d$

In the example, $d = 3$, $c = 1$, $C = (0, -1, 1)$, $B = -1$.

to use it for termination of rewriting, we show:

- \triangleright domain is non-empty,
- \triangleright interpretation respects the domain,
- \triangleright interpretation is compatible with rules.

for each of these, we use *certificates*

Polyhedral Constraints: Domains

Def: *A respects the domain* if $f_A: D^k \to D$. This is certified by giving

- \triangleright for each letter *f*, with interpretation $f_A(x_1,\dots) = F_0 + \sum F_i x_i,$
- ► matrices $W_1, \ldots, W_k \in \mathbb{Q}_{\geq 0}^{c \times c}$ with $\mathsf{CF}_0 + \mathsf{B} \geq (\sum_i \mathsf{W}_i)\mathsf{B},$ ∀1 ≤ *i* ≤ *k* : *CFⁱ* ≥ *WiC*

example: $D = \{ (x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_3 \ge x_2 + 1 \},\$ $[f](x_1, x_2, x_3) = (x_1 + 2x_2 + 1, 0, x_3 + 1)$ take $W_1 = 0$

Polyhedral Constraints: Compatibility

Compatibility of A w.r.t. rule $(l \rightarrow r)$ with $|\text{Var}(I) \cup \text{Var}(r)| = k$ where $([I]_A - [r]_A)(x_1, \ldots, x_k) = \Delta_0 + \sum_i \Delta_i x_i$

is certified by matrices $\mathit{U}_1,\ldots,\mathit{U}_k \in \mathbb{Q}_+^{d \times c},$ such that $\forall i: \Delta_i \geq U_iC$ and $\Delta_0 > \sum_i U_iB$

example:
$$
D = \{\vec{x} \in \mathbb{N}^3 \mid -x_2 + x_3 - 1 \ge 0\},
$$

\n $[f](\vec{x}) = (x_1 + 2x_2 + 1, 0, x_3 + 1),$
\n $[g](\vec{x}) = (x_1, x_3, x_3 + 1),$
\n $[fg - ff](\vec{x}) = (-2x_2 + 2x_3 - 1, 0, 0)$
\ntake $U_1 = (2, 0, 0)^T$.

Polyhedral Constraints: Combined

to prove termination of rewriting system *R*, determine

- \triangleright matrix interpretation (weighted automaton)
- \rightarrow polyhedral domain (linear inequalities)

as solution of a constraint system for validity of certificates for

- \triangleright non-emptiness of the domain
- \triangleright respecting the domain
- \triangleright compatibility with rules

implemented in termination prover Matchbox2015.

Completeness of Certificates

- Thm: automaton respects domain, is *R*-compatible ⇐⇒ certificates exist.
	- \triangleright Correctness (" \Leftarrow ") is easily verified.
	- ► Completeness ("⇒") follows from (inhomogenous) Farkas' Lemma.
- The Lemma (in one of many versions) says
	- ^I A linear inequalitiy *I* is implied by a system *S* of linear inequalities
	- ^I ⇐⇒ *I* ≥ some positive linear combination of *S*.

Derivational Complexity

- \triangleright motivation: (automated) analysis of complexity of programs
- \triangleright derivation height of a term, w.r.t. \rightarrow : dh(→, *s*) = sup{*k* | ∃*t* : *s* →*^k t*}
- \blacktriangleright derivational complexity of \rightarrow : $dc(\rightarrow) = n \mapsto max\{dh(\rightarrow, s) | |s| \leq n\}$
- ► example: dc $(\rightarrow_{\{ba\rightarrow ab\}}) \in \Theta(n \mapsto n^2)$
- \rightarrow "derivational complexity" is an (extra) category of Termination Competitions

Deriv. Complexity and Interpretations

- \triangleright complexity of matrix interpretation (using matrices from some set \mathcal{M}) $dc(\mathcal{M}) = n \mapsto \max\{||M|| : M \in \mathcal{M}^{\leq n}\}\$
- \triangleright Thm: if M is finite and *upper triangular* (0 below main diagonal, 0 or 1 on main diag.), then $dc(\mathcal{M})$ is polynomial
- \rightarrow polyhedral domain restriction is orthogonal to this, but sometimes helpful
- ex. $R = \{fg \rightarrow ff, gf \rightarrow gg\}$: given automaton is upper triangular, this proves dc(*R*) quadratic, this was known, but by different (more complicated) method (root labelling)

Results, Discussion, Announcement

- \triangleright main result: method is correct, implementation.
- \triangleright auxiliary results, see paper
- \triangleright challenge: improve implementation (improve constraint solver, better bit-blasting)
- \triangleright challenge: automated proof of quadratic derivational complexity of ${a² \rightarrow cb, b² \rightarrow ca, c² \rightarrow ba}$
- \triangleright open: extend to other semirings, e.g., arctic.
- ► for more on rewriting and termination: 8th Intl. *School on Rewriting, Leipzig, August 10-14* <http://nfa.imn.htwk-leipzig.de/ISR2015/>