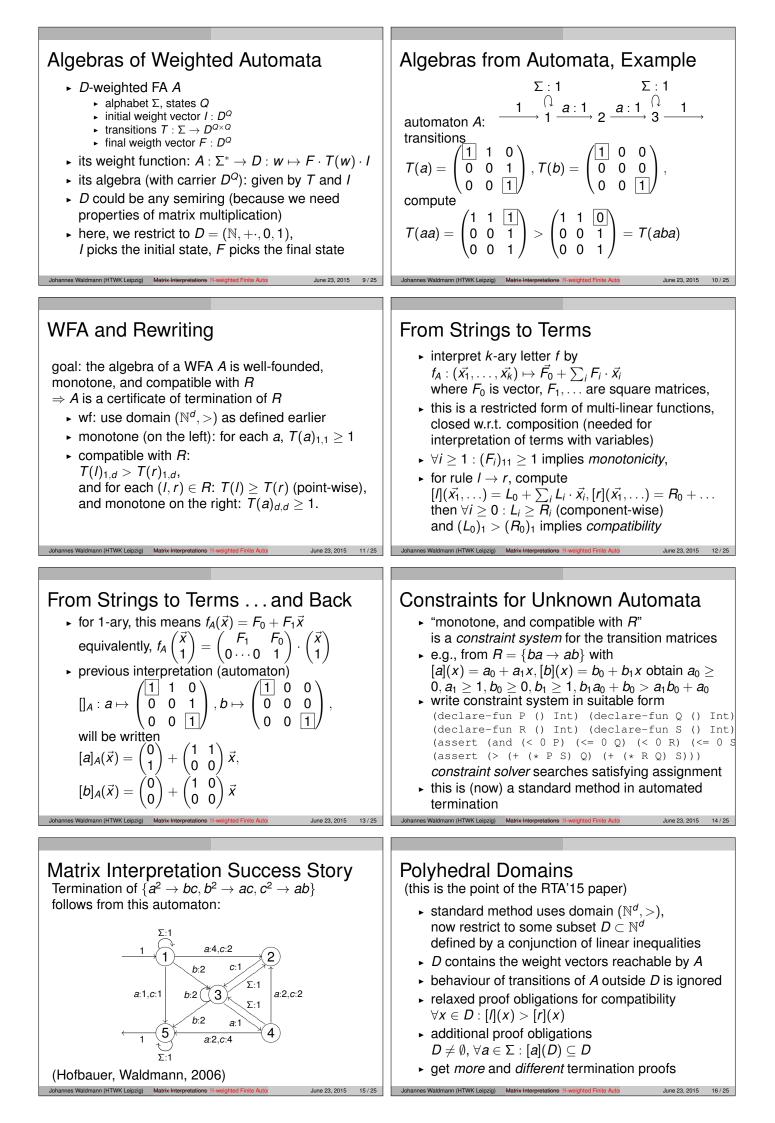
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><list-item><list-item><list-item><table-container></table-container></list-item></list-item></list-item></section-header></section-header>
String Rewriting • alphabet Σ , set of rules $R \subseteq \Sigma^* \times \Sigma^*$, • defines relation (one-step <i>R</i> -rewriting) $u \rightarrow_R v$ $\iff \exists (I, r) \in R, p, q \in \Sigma^* : u = plq \land prq = v$. • <i>R</i> is syntax (program), \rightarrow_R^* is semantics (computation) • examples: $R_{bubble sort} = \{ba \rightarrow ab\},\ R_{exponentiation} = \{ab \rightarrow baa\},\ R_? = \{aa \rightarrow aba\}$ • related: semi-Thue-systems, Markov algorithms, Turing machines, formal grammars Markov algorithms, Turing machines, formal grammars	Termination, and How to Prove It • Def: <i>R</i> is strongly normalizing (or: (uniformly) terminating), written SN(<i>R</i>) iff there is no infinite \rightarrow_R -chain. • Examples: SN({ $ab \rightarrow ba$ }), \neg SN({ $ab \rightarrow b^2a^2$ }) • SN is undecidable (cf. TM halting problem) methods to prove termination • syntactical (e.g., consider overlaps between parts of rules) • (this talk) semantical (assign some meaning to the objects that are being rewritten) Goal: automate the methods (and their certification) Mannes Wadman (HTWK Lepz)
 Automated Termination Analysis Why? Want tools that help in analysis of source/machine code (in IDE/in OS) completion of equational specifications theorem proving (check that induction is well-founded) How to measure progress? Compete! annual Termination Competitions http://termination-portal.org/wiki/Termination_Competition_2015 termination provers run on benchmarks (last year, 2.7 · 10⁴ "job pairs", 4 · 10⁶ seconds CPU) 	Interpretations• Def: partial order $(D, >)$ is well-founded: has no infinite >-chains• Def: interpretation $i : \Sigma^* \to (D, >)$ is compatible with rewrite system R if $u \to_R v \Rightarrow i(u) > i(v)$.• R admits compatible interpretation into some wf domain \iff SN (R) • note: " \Leftarrow " is trivial, take $i = id$ and $D = (\Sigma^*, \to_R^+)$ • example: for $R_{\text{bubblesort}} = \{ba \to ab\}$, count inversions: $i(w) = \{(j, k) \mid j < k \land w_j > w_k\} $ then $u \to_R v \Rightarrow i(u) - 1 = i(v)$ • example: for $\{aa \to aba\} \dots$?
Monotone Algebras Σ -algebra A on wf $(D, >)$ • $\epsilon_A \in D$, and for each $f \in \Sigma$, a function $f_A : D \to D$ • A defines an interpretation $i_A : \Sigma^* \to D$ • Def: A is monotone iff $\forall f \in \Sigma : \forall x, y \in D : x > y \Rightarrow f_A(x) > f_A(y)$ • Def: A is compatible with R if $\forall (I, r) \in R, \forall x \in D : I_A(x) > r_A(x).$ • Thm: R admits a compatible monotone algebraover a well-founded domain \iff SN (R) .note: " \Leftarrow " is still trivial• "number of inversions" is not an algebra (over \mathbb{N})	Linear Algebra domain $(\mathbb{N}^d, >)$ • with $\vec{x} > \vec{y} := x_1 > y_1 \land x_2 \ge y_2 \land \dots \land x_d \ge y_d$ is well-founded example: 1st comp. counts number of <i>aa</i> factors: $[a](x_1, x_2) = (x_1 + x_2, 1), [b](x_1, x_2) = (x_1, 0)$ • is monotone: all coeffs. ≥ 0 , coeff. of x_1 in 1st comp. is > 0 • is compatible with $R = \{aa \rightarrow aba\}$: $[aa](x_1, x_2) = (x_1 + x_2 + [1], 1),$ $[aba](x_1, x_2) = (x_1 + x_2, 0)$ this algebra is the algebra of a weighted automaton



$\begin{array}{l} \textbf{Polyhedral Constraints, Example} \\ \textbf{Prove termination of } R = \{fg \rightarrow ff, gf \rightarrow gg\}. \\ \textbf{Use domain } D = \{(x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_3 \geq x_2 + 1\}. \\ [f](x_1, x_2, x_3) = & (x_1 + 2x_2 + 1, 0, x_3 + 1) \\ [g](x_1, x_2, x_3) = & (x_1 & x_3, x_3 + 1) \\ [fg](x) = & (x_1 + 2x_3 + 1, 0, x_3 + 2), \\ [ff](x) = & (x_1 + 2x_2 + 2, 0, x_3 + 2). \\ \textbf{Now } \forall x \in D : [fg](x) > [ff](x), \text{ despite } [2]. \\ x_1 + 2x_3 + 1 \geq x_1 + (2x_2 + 2) + 1 > x_1 + 2x_2 + 2 \end{array}$	Interpret. with Polyhedral Constraints A polyhedrally constrained matrix interpret. contains: • the interpretation, $f_A(x_1,) = F_0 + \sum F_i x_i$ • the domain, given by $C_A \in \mathbb{Q}^{c \times d}$, $B_A \in \mathbb{Q}^{c \times 1}$, $as D = \{x \mid x \ge 0, Cx + B \ge 0\} \subseteq \mathbb{N}^d$ In the example, $d = 3, c = 1, C = (0, -1, 1), B = -1$. to use it for termination of rewriting, we show: • domain is non-empty, • interpretation respects the domain, • interpretation is compatible with rules. for each of these, we use <i>certificates</i>
Polyhedral Constraints: Domains Def: A respects the domain if $f_A : D^k \to D$. This is certified by giving • for each letter f, with interpretation $f_A(x_1,) = F_0 + \sum F_i x_i$, • matrices $W_1,, W_k \in \mathbb{Q}_{\geq 0}^{c \times c}$ with $CF_0 + B \ge (\sum_i W_i)B$, $\forall 1 \le i \le k : CF_i \ge W_iC$ example: $D = \{(x_1, x_2, x_3) \in \mathbb{N}^3 \mid x_3 \ge x_2 + 1\}$, $[f](x_1, x_2, x_3) = (x_1 + 2x_2 + 1, 0, x_3 + 1)$ take $W_1 = 0$	Polyhedral Constraints: Compatibility Compatibility of <i>A</i> w.r.t. rule $(I \rightarrow r)$ with $ Var(I) \cup Var(r) = k$ where $([I]_A - [r]_A)(x_1, \dots, x_k) = \Delta_0 + \sum_i \Delta_i x_i$, is certified by matrices $U_1, \dots, U_k \in \mathbb{Q}_+^{d \times c}$, such that $\forall i : \Delta_i \ge U_i C$ and $\Delta_0 > \sum_i U_i B$ example: $D = \{\vec{x} \in \mathbb{N}^3 \mid -x_2 + x_3 - 1 \ge 0\}$, $[f](\vec{x}) = (x_1 + 2x_2 + 1, 0, x_3 + 1)$, $[g](\vec{x}) = (-2x_2 + 2x_3 - 1, 0, 0)$ take $U_1 = (2, 0, 0)^T$.
Johannes Waldmann (HTWK Leipzig) Matrix-Interpretations: N-weighted Finite Autor June 23, 2015 19 / 25	Johannes Waldmann (HTWK Leipzig) Matrix-Interpretations: N-weighted Finite Auto June 23, 2015 20 / 25
 Polyhedral Constraints: Combined to prove termination of rewriting system <i>R</i>, determine matrix interpretation (weighted automaton) polyhedral domain (linear inequalities) as solution of a constraint system for validity of certificates for non-emptiness of the domain respecting the domain compatibility with rules implemented in termination prover Matchbox2015. 	 Completeness of Certificates Thm: automaton respects domain, is <i>R</i>-compatible ⇔ certificates exist. Correctness ("←") is easily verified. Completeness ("⇒") follows from (inhomogenous) Farkas' Lemma. The Lemma (in one of many versions) says A linear inequalitiy <i>I</i> is implied by a system <i>S</i> of linear inequalities ⇔ <i>I</i> ≥ some positive linear combination of <i>S</i>.
 Derivational Complexity motivation: (automated) analysis of complexity of programs derivation height of a term, w.r.t. →: dh(→, s) = sup{k ∃t : s →^k t} derivational complexity of →: dc(→) = n ↦ max{dh(→, s) s ≤ n} example: de(→) ⊂ ⊕(n ↦ n²) 	 Deriv. Complexity and Interpretations complexity of matrix interpretation (using matrices from some set <i>M</i>) dc(<i>M</i>) = n → max{ <i>M</i> : <i>M</i> ∈ <i>M</i>^{≤n}} Thm: if <i>M</i> is finite and <i>upper triangular</i> (0 below main diagonal, 0 or 1 on main diag.), then dc(<i>M</i>) is polynomial polyhedral domain restriction is orthogonal to this, but sometimes helpful over <i>P</i> = {fa → ff, af → ag}; given outpmeter in
 example: dc(→_{{ba→ab}}) ∈ Θ(n ↦ n²) "derivational complexity" is an (extra) category of Termination Competitions 	• ex. $R = \{fg \rightarrow ff, gf \rightarrow gg\}$: given automaton is upper triangular, this proves dc(R) quadratic, this was known, but by different (more

Results, Discussion, Announcement

- ► main result: method is correct, implementation.
- ► auxiliary results, see paper
- challenge: improve implementation (improve constraint solver, better bit-blasting)
- challenge: automated proof of quadratic derivational complexity of {a² → cb, b² → ca, c² → ba}
- open: extend to other semirings, e.g., arctic.
- for more on rewriting and termination: 8th Intl. School on Rewriting, Leipzig, August 10-14 http://nfa.imn.htwk-leipzig.de/ISR2015/

Johannes Waldmann (HTWK Leipzig) Matrix-Interpretations N-weighted Finite Autor June 23, 2015 25 / 25