	Day 2
Termination and Complexity Lesson 2 Intl. School on Rewriting 2014 Johannes Waldmann (HTWK Leipzig) August 25, 2014	 polynomially growing matrix interpretations Waldmann: RTA 10, http://dx.doi.org/10. 4230/LIPIcs.RTA.2010.357 relative termination and complexity Zankl/Korp: RTA 10, LMCS 10(1:19)2014 http://cl-informatik.uibk.ac.at/users/ hzankl/new/publications/ZA14_01.pdf
Multilinear Algebras and PathsRecall multilinear algebra with functions of shape $f(x_1^T, \ldots) = v + \sum M_i \cdot x_i^T$ by distributivity, $t_A = \sum \{Path_A(t, p) \mid p \in Pos(t)\}$ where $Path_A(t, p) =$ the product of the matrices in A along the path from root to p, finally multiplied by the vector (absolute coefficient) at p.	Multilinear Algebras and Bounds Corollary: t_A bounded (component-wise) by $ t \cdot \max_p \operatorname{Path}_A(t, p)$ bounded by $M_1 \cdot \ldots \cdot M_k$ where $M_i \in$ the matrices of the interpretation and $k =$ the depth of the term (\leq than the size). Consequently, this problem is essential for
Growth of matrix monoids (Examples)	Matrix monoids and Singletons
• $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$ is linear • $\left\{ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \right\}$ is linear • $\left\{ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \right\}$ is quadratic • $\left\{ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \right\}$ is ?	Thm. growth of set $\{M_1, \ldots, M_k\}$ is bounded by growth of singleton set $\{\max_i M_i\}$ (point-wise max). Thm. growth of singleton $\{M\}$ is polynomial iff eigenvalues of M are in or on unit circle. Example: eigenvalues and -vectors of $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$
Matrix monoids and Singletons	Upper Triangular Matrix Monoids
Note: this reduction to singletons may destroy polynomiality, compare growth of $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$ and $\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}$. for the following matrix shape, this does not happen	Def: $M \in \mathbb{N}^{d \times d]}$ is upper triangular if • below main diagonal: only 0 • on main diagonal: only 0 or 1 Thm: any set of upper triangular matrices is polynomially growth-bounded, the degree is at most $d - 1$. Note: this bound is not sharp, examples?

Deciding polynomial growth (II)
checking for diamonds use $G \times G$ (the cartesian product automaton)
Lex. Comb. and Deriv. Complexity
We have $SN(R/S) \land SN(S) \Rightarrow SN(R \cup S)$. (we can obtain this by a lex. comb. of orders $>_R$ and $>_S$ such that $\rightarrow_R \subseteq >_R$ and $\rightarrow_S \subseteq >_R^{0,1}$ and $\rightarrow_S \subseteq >_S$) what can we infer from $dc_{R/S}$ and dc_S about $dc_{R\cup S}$? in general, not much: each <i>R</i> step can (drastically) increase the $>_S$ -height (Exercise: by how much exactly? Examples?) the goal is to bound this increase.
Weight Gap Principle (warm-up)
Assume $SN(R/S) \land SN(S)$ and R is size-non-increasing. $dc_{R\cup S}(n) \le dc_{R/S}(n) \cdot dc_{S}(n)$ Proof? Example that bound can be reached? Now replace "size" by some other interpretation, and generalize (slightly).
What interpretations admit a weight gap?
• example: interpretation is sum of weights of symbols for "sum of weights", dc _S is linear. there are <i>S</i> with linear dc that admit no weight gap: Example: $R = \{cL \rightarrow R\}, S = \{Ra \rightarrow bbR, R \rightarrow L, bL \rightarrow LA\}$. Verify that • dc _{<i>R</i>/S} is linear (easy) • dc _{<i>S</i>} is linear (not that easy) • dc _{<i>R</i>\cup S} is exponential (easy)

Prepare for Exotic Semirings

We had matrices over $\mathbb{N},$ we will see matrices over other semirings. Homework is to recall some basic concepts

- ► definition of semiring
- ► examples: natural, tropical, arctic, fuzzy
- ▶ why do form matrices a semiring again
- well-founded order and monotonicity of operations