Termination and Complexity <i>Lesson 3</i> Intl. School on Rewriting 2014 Johannes Waldmann (HTWK Leipzig) August 25, 2014	 Day 3 exotic semirings and their matrix semirings arctic and tropical matrix int. for SRS Gebhardt, Waldmann: Act. Cyb. 19(2), http://www.inf. u-szeged.hu/actacybernetica/edb/vol19n2/Gebhardt_2009_ActaCybernetica.xml arctic and tropical matrix int. with DP method Koprowski, Waldmann, RTA 08, Act. Cyb. 19(2) http://www.inf.u-szeged.hu/actacybernetica/edb/vol19n2/Koprowski_2009_ ActaCybernetica.xml matchbounded and deleting SRS, decomposition Endrullis, Hofbauer, Waldmann, WST 06 http://www.imn.htwk-leipzig.de/-waldmann/talk/06/wst/decompose/
Exotic Multilinear Functions Let <i>E</i> be any semiring. Consider multiti-linear functions $f_A : (E^d) \to E^d$ of shape (as before) $f_a(x_1^T, \dots, x_k^T) = M_1 x_1^T + \dots + M_k x_k^T + v$ For <i>E</i> = arctic, tropical, fuzzy semiring: • addition (max, min) is not monotone (examples?) • multilinear functions are not monotone (except for very special cases)	Monotone Exotic Multilinear Functions $f_a(x_1^T, \dots, x_k^T) = M_1 x_1^T + \dots + M_k x_k^T + v$ need to remove (or treat specially) all additions:• additions of vectors (the "+" in the above line)• additions inside dot products in matrix-vector products
Monotone Exotic Matrix MultiplicationFor $E =$ artic, tropical:Define $>_0$ on E by $x >_0 y \iff x > y \lor x = 0_E = y$ Define $>_0$ on E^d by $(x_1 > y_1) \land (x_2 >_0 y_2) \land \cdots \land (x_d >_0 y_d)$ Question: find the set of matrices $M \subseteq E^{d \times d}$ such thatProp. Multiplication by $A \in M$ is monotone w.r.t.>Exercise: and show that this does not work for $(x_1 > y_1) \land (x_2 \ge y_2) \land \cdots \land (x_d \ge y_d)$	Monotone Exotic Multilinear Functions $f_a(x_1^T, \ldots, x_k^T) = M_1 x_1^T + \ldots + M_k x_k^T + v$ Prop. If f_A verifies $\blacktriangleright k = 1$ (unary symbols) and $v = (0_E, \ldots, 0_E)^T$ and top-left $(M_1) \neq 0_E$ \blacktriangleright or $k = 0$ (nullary symbols) then f_A is monotone w.r.t. $>_0$ Exercise: and this does not hold if any of the conditions are violated.
Exotic Multilinear Functions and Compatibility how to check that exotic matrix int. is compatible with rewrite rule? By previous slide, it is enough to consider $f_a(x_1^T) = M_1 x_1^T$ Also recall that top-left $(M_1) \neq 0_E$. Define $>_0$ on $E^{d \times d}$ by point-wise extension of $>_0$ on E . Prop. $A >_0 B$ implies $Ax^T >_0 Bx^T$ for x with $x_1 \neq 0_E$. example: $aa \rightarrow aba$ tropical with dim 3	Exotic Interpretations and Complexity Thm. If R admits an arctic or tropical matrix interpretation, then dc _R is linear.

 Top-Termination Power of exotic matrix interpretations is much increased in combination with: Dependendy Pairs Transformation: reduces a termination problem SN(R) to a relative top-termination problem SN(DP(R)_{top}/R) because for top termination, interpretation need not be monotone at all for the "relative" part, need only be weakly monotone 	 Fuzzy Matrix Interpretations the (min,max) semiring since addition (min) is not monotone: remarks on arctic and tropical do apply: method cannot handle symbols of arity > 1 but does it work for unary? No: multiplication (max) is again not monotone. there are not enough values (height of interpretation is finite) but this can be repaired (by transforming to tropical matrices) there is an efficient semi-algorithm to find fuzzy matrix int.
From Fuzzy to Tropical consider only unary matrix interpretations of shape $f_A(x^T) = M \cdot x^T$ Def: from fuzzy matrix <i>F</i> , compute tropical matrix $T = \text{lift}_d(F)$ by point-wise multiplication by <i>d</i> . Thm: Let <i>A</i> be a fuzzy matrix interpretation compatible with SRS <i>R</i> . Let $m = \text{max}$. finite entry in matrices in <i>A</i> and w = max. length of rhs of <i>R</i> . Then lift _{m·w} (<i>A</i>) (point-wise) is a tropical interpretation that is compatible with <i>R</i> .	(Fuzzy) Matrix I. as Weighted Autom. given fuzzy matrix int. A compatible with SRS <i>R</i> , consider automaton (graph) on states $Q = \{1,, d\}$, with 1 initial and final, and edge $p \stackrel{(a,h)}{\rightarrow} q$ iff $M_a(p,q) = h < +\infty$. concatenate $p \stackrel{(a_1,h_1)}{\rightarrow} q \stackrel{(a_2,h_2)}{\rightarrow} r$ to $p \stackrel{(a_1,a_2,\max(h_1,h_2))}{\rightarrow} r$. this automaton computes a function $A: Q \times \Sigma^* \times Q \to F: (p, w, q) \mapsto \min\{h p \stackrel{(w,h)}{\rightarrow} q\}$ compatibility means: $\forall (I, r) \in R, p, q \in Q: A(p, I, q) >_0 A(p, r, q).$ construction of compatible interpretation \sim completion of automaton
Match-bounded string rewriting for R over Σ , define match _{h} (R) over lift(Σ) by $\{l' \rightarrow \text{lift}_{h-1}(r) \mid \text{base}(l') = l$, max height(l) = h } Ex. match ₃ ($aa \rightarrow aba$) = $\{\dots, a_3a_0 \rightarrow a_2b_2a_2, \dots\}$ For R -rewrite sequence $s : w_0 \rightarrow w_1 \rightarrow \dots$ obtain match _{h} (R)-sequence s' : start with lift _{h} (w_0) and apply lifted rule at position. Def: R is match-bounded by h if each s has a corresponding s' (i.e., labels do not go below 0). Prop. R is match-bounded by $h \iff R$ admits a compatible fuzzy matrix interpretation with entries $\leq h$.	A Decomposition Result new letters $\overleftarrow{a}, \overrightarrow{a},$ operation on words $\overleftarrow{ab} = \overleftarrow{b} \overleftarrow{a}$, etc. define $E = \{a_x \overleftarrow{a_x} \to \epsilon \mid a \in \Sigma\} \cup \{\overrightarrow{a_x} a_x \to \epsilon \mid a \in \Sigma\}$ from each rule $(pa_h q \to r) \in \text{match}_h(R)$, where a_h is largest letter, construct rule $a_h \to \overleftarrow{p} \ r \ \vec{q}$, obtain set of rules <i>C</i> . Prop. $\rightarrow_{\text{match}(R)} = \rightarrow_C \circ \rightarrow_E^* \cap (\text{lift}(\Sigma)^*)^2$ Thm. $\rightarrow_{\text{match}(R)}^* = \rightarrow_C^* \circ \rightarrow_E^* \cap (\text{lift}(\Sigma)^*)^2$ Note: \rightarrow_C is subsitution, \rightarrow_E is monadic, both are effectively REG-preserving Cor. match(<i>R</i>) is REG-preserving Cor. <i>R</i> match-bounded $\Rightarrow R$ REG-preserving
A completion procedure • start with 1 state and loops $1 \stackrel{(a,h)}{\rightarrow} 1$ • while there is $(I, r) \in R, p, q \in Q$ such that $h = A(p, I, q) \neq_0 A(p, r, q)$: • pick $p', q' \in Q$ such that $p' \stackrel{(a,h)}{\rightarrow} q'$ is on path from p to q , where $I = u \cdot a \cdot v$. • add fresh path from p' to q' labelled $\overleftarrow{u} \cdot \text{lift}_{h-1}(r) \cdot \overrightarrow{v}$ (this is one \rightarrow_C -step) • close the automaton w.r.t. \rightarrow_E (by adding ϵ -transitions) Thm. this construction terminates iff R is match-bounded by h , the result is a fuzzy-weighted automaton compatible with R	 Decision Problems for Exotic Int. for <i>E</i> in natural, arctic, fuzzy semiring, consider these decision problems: given <i>R</i> (and <i>d</i>, and <i>h</i>), does <i>R</i> admit a comaptible <i>E</i>-interpretation with matrix size ≤ <i>d</i> and entries ≤ <i>h</i>? known results about complexity: <i>d</i> and <i>h</i> given: decidable (by enumeration) <i>d</i> given: decidable for fuzzy (can derive a bound for <i>h</i>) <i>h</i> given: decidable for fuzzy (by automata completion)