Termination and Complexity Lesson 1 Intl. School on Rewriting 2014

Johannes Waldmann (HTWK Leipzig)

August 25, 2014

Day 1

► termination, complexity (abstractly)

Hofbauer, Lautemann, RTA 98, http://www.theory.informatik.

uni-kassel.de/~hofbauer/research/papers/RTA89-revised.pdf

interpretations, matrix algebras
 Zantema: Termination of Rewriting, 2000,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2505

Endrullis, Waldmann, Zantema: RTA 06,

http://dx.doi.org/10.1007/11814771_47

relative termination (lexicogr. combination)
 (abstract rewriting)

Geser 1990: Relative Termination (cf. http://queuea9.

 $\verb|wordpress.com/2010/05/27/getting-acquainted-with-relative-termination/|)|$

Termination

with $\forall i: t_i \rightarrow t_{i+1}$

abstract rewriting system: relation \rightarrow on a set T relation \rightarrow is terminating (or: well-founded) (or: stronly normalizing), notation $SN(\rightarrow)$ iff there is no infinite sequence $[t_0, t_1, \ldots]$ (that is, the sequence is a mapping $t : \mathbb{N} \rightarrow T$)

examples:
$$T = \mathbb{N}$$
,
 $\rightarrow_A = \{(x+1,x) \mid x \ge 0\}$
 $\rightarrow_B = \{(x,y) \mid x > y\}$

▶ $\rightarrow_B = \{(2x,3x) \mid x > 0\}$ motivation: T is set of machine states, \rightarrow is one (non-deterministic) computation step, then " \rightarrow is terminating" means "each computation will give a result" after a finite number of steps

Derivational Complexity

with a function $|\cdot|: T \to \mathbb{N}$ (think "size"): derivational complexity of \to is the function $\mathrm{dc}_{\to}: s \mapsto \sup\{k \mid |t_0| \le s, t_0 \to^k t_k\}$ note: in general, $\mathrm{dc}_{\to}: \mathbb{N} \to \mathbb{N} \cup \{+\infty\}$ for terminating $\to: \mathrm{dc}_{\to}: \mathbb{N} \to \mathbb{N}$ motivation: quantitative bounds for computations (termination is qualitative bound)

Monotone Interpretations

Definition: given (T, \rightarrow_T) and (D, \rightarrow_D) , function $i: T \rightarrow D$ is monotone iff $\forall x, y \in T: x \rightarrow_T y \Rightarrow i(x) \rightarrow_D i(y)$.

Theorem:

if *i* is monotone from (T, \rightarrow_T) to (D, \rightarrow_D) , and (D, \rightarrow_D) is well-founded, then (T, \rightarrow_T) is well-founded.

typical application: (D, \rightarrow_D) is $(\mathbb{N}, >)$. we will consider different D also, e.g., $D = \mathbb{N}^k$ (obvious question: what is well-founded \rightarrow_D then? We'll see non-obvious answers.)

Examples

from programming:

```
while (y > 0) \{ (x,y) := (y, mod(x,y));
```

interpretation: i(x, y) = y from string rewriting (subword replacement in context)

►
$$R_1 = \{ab \to b\}, i(w) = |w|_a$$

$$R_2 = \{ab \rightarrow ba\}, i(w) =$$

$$|\{(p,q) \mid 1 \le p < q \le |w|, w_p = a, w_q = b\}|$$

Algebras

- ▶ interpretation: any mapping $\text{Term}(\Sigma) \to D$
- algebra: mapping defined by induction over term structure

Given signature Σ , a Σ -algebra A consists of

- → domain D (any set),
- ▶ for each $f \in \Sigma$ with arity k, a k-ary function $f_A : D^k \to D$.

Then, each $t \in \text{Term}(\Sigma)$ has a value in the algebra, we can write t_A or A(t), or . . . Ex. (always: $\Sigma = \{+/2, 1/0\}$, domain \mathbb{N})

- ► algebra $+_A(x, y) = x + y, 1_A = 0$
 - ► algebra $+_A(x, y) = x y, 1_A = 0$
 - ► algebra $+_A(x, y) = x * y, 1_A = 0$

Monotone Algebras

algebra is ordered if domain is ordered (D, >). is well-founded if (D, >) is well-founded ordered algebra is *monotone* if each function is monotone in each argument:

$$d_i > d'_i$$
 implies

$$f(\ldots,d_{i-1},d_i,d_{i+1},\ldots) > f(\ldots,d_{i-1},d_i',d_{i+1},\ldots)$$

Ex.: which are monotone w.r.t. standard order $(\mathbb{N}, >)$?

(always
$$\Sigma = \{+/2, 1/0\}$$
)

- algebra $+_A(x, y) = x + y, 1_A = 0$
- ► algebra $+_A(x, y) = x y, 1_A = 0$
- algebra $+_A(x, y) = x * y, 1_A = 0$

Compatible Monotone Algebras

Def: a monotone Σ -algebra A is *compatible* with a (rewrite) relation \rightarrow on Term(Σ): if $s \rightarrow t$, then A(s) > A(t).

Theorem: if \rightarrow is compatible with a well-founded monotone algebra, then \rightarrow is terminating. Cor: derivation height of t w.r.t. \rightarrow is bounded by height of D_a w.r.t. >.

Polynomial Algebras

the classical case (in Termination, since 1970s), see also Baader/Nipkow

- ▶ algebra domain is (N,>)
- algebra functions are polynomials

```
EXAMPLE implication for complexity: doubly exponential shortcomings: cannot handle systems like \{fg \rightarrow ff, gf \rightarrow gg\}. \{aa \rightarrow aba\} (since total termination implies simple termination)
```

Algebras of Vectors (Def.)

note: $(\mathbb{N}, >)$ is total. We consider now monotone algebras

- ▶ for domain \mathbb{N}^d
- with non-total ordering

$$(x_1, x_2, ..., x_d) > (y_1, y_2, ..., y_d)$$
 iff $(x_1 > y_1) \land (x_2 \ge y_2) \land ... \land (x_d \ge y_d)$.

check that this is well-founded and non-total (both trivial)

example:

 $[a](x_1, x_2) = (x_1 + x_2, 1), [b](x_1, x_2) = (x_1, 0).$ check that these are monotone.

exercise: replace \wedge by $\vee,$ check properties.

Algebras of Vectors (Appl.)

 $[a](x_1,x_2)=(x_1+x_2,1),[b](x_1,x_2)=(x_1,0).$ check that $[aa](x_1,x_2)>[aba](x_1,x_2).$ This algebra is compatible with $\{aa\to aba\}$, so it proves termination of that rewrite system. Homework: find algebra (on $(\mathbb{N}^d,>)$) compatible with $\{fg\to ff,gf\to gg\}$.

Matrix interpretations (Def.)

Def: an algebra on $(\mathbb{N}^d, >)$ is called matrix interpretation if each k-ary function symbol f is interpreted by a multlti-linear function

$$f_A:(\mathbb{N}^d)\to\mathbb{N}^d$$
 of shape

$$f_A(x_1^T, \dots, x_k^T) = M_1^{(f)} x_1^T + \dots + M_k^{(f)} x_k^T + v^{(f)}$$

where $M_i^{(f)} \in \mathbb{N}^{d \times d}$ (square matrices),

 $v^{(f)} \in \mathbb{N}^{1 \times d}$ (column vector).

$$[a](x^T) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot x^T + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$[b](x^T) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot x^T + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$(x^T) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot x^T + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Matrix interpretations (Prop.)

- these multi-linear functions are closed w.r.t. composition example (repeated) compute [a]([a](x^T)), [aba](x^T)
- ▶ multi-linear function is monotone iff for each M_i , the top-left entry is > 0.
- these monotone multi-linear functions are closed under composition (of course)
- if t ∈ Term(Σ, X) and Σ-matrix interpretation A, then t_A is | Var(t)|-ary multi-linear function.

Matrix interpretations (Prop.)

► Def: for k-ary multi-linear functions f, g, write f > g iff $\forall x_i^T : f(x_1^T, \dots, x_k^T) > g(x_1^T, \dots, x_k^T)$

► Prop.
$$f > g$$
 iff

 $\forall i: M_i^{(f)} \geq M_i^{(g)} \text{ and } v^{(f)} > v^{(g)}.$

► Def: A compatible with R:

$$\forall (I, r) \in R : I_A > r_A$$
,
Thm: if A monotone, and A compatible with R , then \rightarrow_R is terminating.

matrix interpretation is *certificate of termination* for *R*

- it implies the termination property
 - its validity is easy to check

Matrix Interpretation (easy examples)

linear polynomials are 1-dimensional matrix ints. e.g., [a](x) = 2x, [b](x) = x + 1 is compatible with $ab \rightarrow ba$.

[a](x) = 3x, [b](x) = x + 1 is compatible with $ab \rightarrow bba$.

Matrix Interpretation (hard examples)

- ► z001: (Zantema's Problem) $\{a^2b^2 \rightarrow b^3a^3\}$,
- ▶ z086: (Zantema's Other Problem) $\{ab \rightarrow c^2, ac \rightarrow b^2, bc \rightarrow a^2\}$
- ► These were contributed to TPDB (Termination Problems Data Base), http://termination-portal.org/ wiki/TPDB
- ▶ by Hans Zantema, http://www.win.tue.nl/~hzantema/

Matrix Interpretation (derivation lengths)

Prop. If R admits matrix interpretation, then dc_R is at most exponential.

(Tomorrow: polynomially bounded matrix interpretations)

Exerc. find super-exonential derivations for $\{ab \rightarrow bba, cb \rightarrow bcc\}$.

Cor. This system does not admit matrix int. (but it is terminating—how do we prove it?)

Combining well-founded relations

Definition: (T_1, \rightarrow_1) and (T_2, \rightarrow_2) define relation \rightarrow on $T_1 \times T_2$ by $(x_1, x_2) \rightarrow (y_1, y_2)$ iff $x_1 \rightarrow_1 y_1$ or $(x_1 = y_1)$ and $x_2 \rightarrow_2 y_2$.

Notation lex $(\rightarrow_1, \rightarrow_2)$ for this \rightarrow .

Theorem: if (T_1, \rightarrow_1) well-founded and (T_2, \rightarrow_2) well-founded, then $(T_1 \times T_2, \text{lex}(\rightarrow_1, \rightarrow_2))$ well-founded.

Proof: by contradiction. Assume infinite \rightarrow -chain in $T_1 \times T_2$. First component must eventually be stationary.

Combining well-founded relations (Application)

prove termination of $R \cup S$ where $R = \{ab \rightarrow bba\}, S = \{cb \rightarrow bcc\}.$

Combining well-founded relations (Outlook)

... so we can combine termination proofs. Can we combine statements about complexity? We will see tomorrow:

- in general, we get a huge bound
- in special cases, it is better