	Day 1
Termination and Complexity <i>Lesson 1</i> Intl. School on Rewriting 2014 Johannes Waldmann (HTWK Leipzig) August 25, 2014	 termination, complexity (abstractly) Hofbauer, Lautemann, RTA 98, http://www.theory.informatik. uni-kassel.de/-hofbauer/research/papers/RTA89-revised.pdf interpretations, matrix algebras Zantema: Termination of Rewriting, 2000, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2505 Endrullis, Waldmann, Zantema: RTA 06, http://dx.doi.org/10.1007/11814771_47 relative termination (lexicogr. combination) (abstract rewriting) Geser 1990: <i>Relative Termination</i> (cf. http://queuea9. wordpress.com/2010/05/27/getting-acquainted-with-relative-termination/)
$\label{eq:stract} \hline \textbf{Termination} \\ abstract rewriting system: relation \rightarrow on a set T relation \rightarrow is terminating (or: well-founded) (or: stronly normalizing), notation SN(\rightarrow) iff there is no infinite sequence [t_0, t_1, \ldots] (that is, the sequence is a mapping t : \mathbb{N} \rightarrow T) with \forall i : t_i \rightarrow t_{i+1} examples: T = \mathbb{N},\blacktriangleright \rightarrow_A = \{(x+1,x) \mid x \ge 0\}\blacktriangleright \rightarrow_B = \{(x,y) \mid x > y\}\blacktriangleright \rightarrow_B = \{(2x, 3x) \mid x > 0\} motivation: T is set of machine states, \rightarrow is one (non-deterministic) computation step, then "\rightarrow is terminating" means "each computation will give a result" after a finite number of steps$	$\label{eq:stable} \begin{array}{ l l l l l l l l l l l l l l l l l l l$
Monotone Interpretations Definition: given (T, \rightarrow_T) and (D, \rightarrow_D) , function $i: T \rightarrow D$ is monotone iff $\forall x, y \in T : x \rightarrow_T y \Rightarrow i(x) \rightarrow_D i(y)$. Theorem: if <i>i</i> is monotone from (T, \rightarrow_T) to (D, \rightarrow_D) , and (D, \rightarrow_D) is well-founded, then (T, \rightarrow_T) is well-founded. typical application: (D, \rightarrow_D) is $(\mathbb{N}, >)$. we will consider different <i>D</i> also, e.g., $D = \mathbb{N}^k$ (obvious question: what is well-founded \rightarrow_D then? We'll see non-obvious answers.)	Examplesfrom programming:while $(y > 0) \{ (x, y) := (y, mod(x, y));$ interpretation: $i(x, y) = y$ from string rewriting (subword replacement in context)
$\label{eq:algebras} \begin{split} \textbf{Algebras} & \bullet \text{ interpretation: any mapping } Term(\Sigma) \to D \\ \bullet \text{ algebra: mapping defined by induction over term structure} \\ & Given signature \Sigma, \ a \ \Sigma \text{-algebra } A \ consists of \\ \bullet \ domain D \ (any set), \\ \bullet \ for each f \in \Sigma \ with arity k, \ a \ k \text{-ary function} \\ & f_A: D^k \to D. \\ & Then, each t \in Term(\Sigma) \ has a value in the \\ & algebra, we \ can \ write t_A \ or A(t), \ or \dots \\ & Ex. (always: \Sigma = \{+/2, 1/0\}, \ domain \mathbb{N}) \\ \bullet \ & algebra +_A(x, y) = x + y, \ 1_A = 0 \\ \bullet \ & algebra +_A(x, y) = x * y, \ 1_A = 0 \\ \bullet \ & algebra +_A(x, y) = x * y, \ 1_A = 0 \end{split}$	$\label{eq:spherical_states} \begin{split} & \text{Monotone Algebras} \\ & \text{algebra is ordered if domain is ordered } (D, >). \\ & \text{is well-founded if } (D, >) \text{ is well-founded} \\ & \text{ordered algebra is monotone if each function is} \\ & \text{ordered algebra is monotone if each function is} \\ & \text{monotone in each argument:} \\ & d_i > d_i' \text{ implies} \\ & f(\dots, d_{i-1}, d_i, d_{i+1}, \dots) > f(\dots, d_{i-1}, d_i', d_{i+1}, \dots) \\ & \text{Ex.: which are monotone w.r.t. standard order} \\ & (\mathbb{N}, >)? \\ & (\text{always } \Sigma = \{+/2, 1/0\}) \\ & \bullet \text{ algebra } +_A(x, y) = x + y, 1_A = 0 \\ & \bullet \text{ algebra } +_A(x, y) = x * y, 1_A = 0 \\ & \bullet \text{ algebra } +_A(x, y) = x * y, 1_A = 0 \end{split}$

	٦
Compatible Monotone Algebras Def: a monotone Σ -algebra A is <i>compatible</i> with a (rewrite) relation \rightarrow on Term(Σ): if $s \rightarrow t$, then $A(s) > A(t)$. Theorem: if \rightarrow is compatible with a well-founded monotone algebra, then \rightarrow is terminating. Cor: derivation height of t w.r.t. \rightarrow is bounded by height of D_a w.r.t. $>$.	Polynomial Algebrasthe classical case (in Termination, since 1970s), see also Baader/Nipkow• algebra domain is $(\mathbb{N}, >)$ • algebra functions are polynomialsEXAMPLE implication for complexity: doubly exponential shortcomings: cannot handle systems like $\{fg \rightarrow ff, gf \rightarrow gg\}$. $\{aa \rightarrow aba\}$ (since total termination implies simple termination)
Algebras of Vectors (Def.)note: $(\mathbb{N}, >)$ is total. We consider now monotone algebras• for domain \mathbb{N}^d • with non-total ordering $(x_1, x_2, \dots, x_d) > (y_1, y_2, \dots, y_d)$ iff $(x_1 > y_1) \land (x_2 \ge y_2) \land \dots \land (x_d \ge y_d)$.check that this is well-founded and non-total (both trivial) example: $[a](x_1, x_2) = (x_1 + x_2, 1), [b](x_1, x_2) = (x_1, 0)$.check that these are monotone. exercise: replace \land by \lor , check properties.	Algebras of Vectors (Appl.) $[a](x_1, x_2) = (x_1 + x_2, 1), [b](x_1, x_2) = (x_1, 0).$ check that $[aa](x_1, x_2) > [aba](x_1, x_2).$ This algebra is compatible with $\{aa \rightarrow aba\}$, so it proves termination of that rewrite system. Homework: find algebra (on $(\mathbb{N}^d, >))$ compatible with $\{fg \rightarrow ff, gf \rightarrow gg\}$.
Matrix interpretations (Def.)Def: an algebra on $(\mathbb{N}^d, >)$ is called matrix interpretation if each k-ary function symbol f is interpreted by a multiti-linear function $f_A: (\mathbb{N}^d) \to \mathbb{N}^d$ of shape $f_A(x_1^T, \ldots, x_k^T) = M_1^{(f)} x_1^T + \ldots + M_k^{(f)} x_k^T + v^{(f)}$ where $M_i^{(f)} \in \mathbb{N}^{d \times d}$ (square matrices), $v^{(f)} \in \mathbb{N}^{1 \times d}$ (column vector). $[a](x^T) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot x^T + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $[b](x^T) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot x^T + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Matrix interpretations (Prop.)• these multi-linear functions are closed w.r.t. composition example (repeated) compute $[a]([a](x^T)), [aba](x^T)$ • multi-linear function is monotone iff for each M_i , the top-left entry is > 0.• these monotone multi-linear functions are closed under composition (of course)• if $t \in \text{Term}(\Sigma, X)$ and Σ -matrix interpretation A , then t_A is $ Var(t) $ -ary multi-linear function.
Matrix interpretations (Prop.)• Def: for k-ary multi-linear functions f, g , write $f > g$ iff $\forall x_i^T : f(x_1^T, \dots, x_k^T) > g(x_1^T, \dots, x_k^T)$ • Prop. $f > g$ iff $\forall i : M_i^{(f)} \ge M_i^{(g)}$ and $v^{(f)} > v^{(g)}$.• Def: A compatible with R : $\forall (I, r) \in R : I_A > r_A$, Thm: if A monotone, and A compatible with R , then \rightarrow_R is terminating.matrix interpretation is certificate of termination for R • it implies the termination property • its validity is easy to check	Matrix Interpretation (easy examples)linear polynomials are 1-dimensional matrix ints. e.g., $[a](x) = 2x, [b](x) = x + 1$ is compatible with $ab \rightarrow ba$. $[a](x) = 3x, [b](x) = x + 1$ is compatible with $ab \rightarrow bba$.

Matrix Interpretation (hard examples)	Matrix Interpretation (derivation lengths)
 z001: (Zantema's Problem) {a²b² → b³a³}, z086: (Zantema's Other Problem) {ab → c², ac → b², bc → a²} These were contributed to TPDB (Termination Problems Data Base), http://termination-portal.org/wiki/TPDB by Hans Zantema, http://www.win.tue.nl/~hzantema/ 	Prop. If <i>R</i> admits matrix interpretation, then dc _{<i>R</i>} is at most exponential. (Tomorrow: polynomially bounded matrix interpretations) Exerc. find super-exonential derivations for $\{ab \rightarrow bba, cb \rightarrow bcc\}$. Cor. This system does not admit matrix int. (but it is terminating—how do we prove it?)
Combining well-founded relations Definition: (T_1, \rightarrow_1) and (T_2, \rightarrow_2) define relation \rightarrow on $T_1 \times T_2$ by $(x_1, x_2) \rightarrow (y_1, y_2)$ iff $x_1 \rightarrow_1 y_1$ or $(x_1 = y_1$ and	Combining well-founded relations (Application)
$x_2 \rightarrow_2 y_2$). Notation lex $(\rightarrow_1, \rightarrow_2)$ for this \rightarrow . Theorem: if (T_1, \rightarrow_1) well-founded and (T_2, \rightarrow_2) well-founded, then $(T_1 \times T_2, \text{lex}(\rightarrow_1, \rightarrow_2))$ well-founded. Proof: by contradiction. Assume infinite \rightarrow -chain in $T_1 \times T_2$. First component must eventually be stationary.	prove termination of $R \cup S$ where $R = \{ab \rightarrow bba\}, S = \{cb \rightarrow bcc\}.$
Combining well-founded relations (Outlook)	
 so we can combine termination proofs. Can we combine statements about complexity? We will see tomorrow: in general, we get a huge bound in special cases, it is better 	