Termination and Complexity Notations for Rewriting Intl. School on Rewriting 2014

Johannes Waldmann (HTWK Leipzig)

August 25, 2014

Signature, Terms

signature: set of function symbols with arities example: $\Sigma = \{f/2, S/1, Z/0\}$. term *t* over signature Σ : $t = f(t_1, ..., t_k)$ where $(f/k) \in \Sigma$ and $\forall 1 \le i \le k : t_i \in \text{Term}(\Sigma)$ example: $f(S(Z()), Z()) \in \text{Term}(\Sigma)$.

Positions, Subterms

```
positions in t:
Pos(f(t_1,...,t_k)) = \{[i]\} \cup \{[i] \circ p \mid 1 \le i \le k, p \in \}
Pos(t_i)
example:
Pos(f(S(Z()), Z())) = \{[1, [1], [1, 1], [2]\}\)
subterm at position: for p \in Pos(t):
t([]) = t, f(t_1, ..., t_k)([i] \circ p) = t_i(p)
function symbol at position: for p \in Pos(t):
f(...)([]) = f, f(t_1,...,t_k)([i] \circ p) = t_i(p)
(note: overloaded notation)
```

Positions, Replacements at position

applications: subterm relation: $s \leq tiff \exists p \in Pos(t) : s = t(p)$ size of term: |t| = |Pos(t)|t(p := s') for $p \in Pos(t)$: $t([] := s) = s, f(\dots, t_i, \dots)([i] \circ p := s) =$ $f(\dots, t_i(p := s), \dots).$

Variables, Substitutions

term over signature Σ with variables from set X (disjoint from Σ): Term(Σ, X): $x \in X \Rightarrow x \in \text{Term}(\Sigma, X)$ and $\forall i: t_i \in \text{Term}(\Sigma, X) \Rightarrow f(t_1, \dots, t_k) \in \text{Term}(\Sigma, X)$ ground substitution: partial mapping $\sigma: X \hookrightarrow \operatorname{Term}(\Sigma)$ extended to mapping σ : Term(Σ, X) \rightarrow Term(Σ), written post-fix by $x\sigma = \sigma(x), f(t_1, \ldots, t_k)\sigma = f(t_1\sigma, \ldots, t_k\sigma)$

Term Rewriting

rule $(I, r) \in \text{Term}(\Sigma, X)^2$ apply rule (I, r) at position p in term t $t \xrightarrow{(I,r),p} t'$ if

•
$$\exists \sigma : t(p) = I\sigma \land t(p := r\sigma) = t'$$

rewrite system *R* is set of rules $t \rightarrow_R t'$ iff $\exists (l, r) \in R, p : t \stackrel{(l, r), p}{\rightarrow} t'$

String Rewriting as a special case

- all symbols are unary
- there is one nullary symbol "0" that never occurs in rules

example $R = \{a(b(x)) \rightarrow b(a(x))\}$ over signature $\Sigma = \{a/1, b/1, 0/0\}$

- terms are in fact strings: a(b(a(b(0)))) ~ abab ∈ {a, b}*
- a rule is a pair of strings, $a(b(x)) \rightarrow b(a(x) \sim ab \rightarrow ba)$
- string rewriting system $R \subseteq (\Sigma^*)^2$
- string rewriting relation: w →_R w' ⇔ ∃(I, r) ∈ R, p, q ∈ Σ* : w = plq, prq = w'

Summary

- these are basic concepts, cf. also Baader/Nipkow
- you should work on the online exercises that require you to find derivations
- there is a highscore ranking: longer derivations are better (this is preparation for derivational complexity)