Termination and Complexity <i>Notations for Rewriting</i> Intl. School on Rewriting 2014 Johannes Waldmann (HTWK Leipzig) August 25, 2014	Signature, Terms signature: set of function symbols with arities example: $\Sigma = \{f/2, S/1, Z/0\}$. term <i>t</i> over signature Σ : $t = f(t_1,, t_k)$ where $(f/k) \in \Sigma$ and $\forall 1 \le i \le k : t_i \in \text{Term}(\Sigma)$ example: $f(S(Z()), Z()) \in \text{Term}(\Sigma)$.
Positions, Subterms positions in t: $Pos(f(t_1,,t_k)) = \{[]\} \cup \{[i] \circ p \mid 1 \le i \le k, p \in Pos(t_i)\}$ example: $Pos(f(S(Z()), Z())) = \{[], [1], [1, 1], [2]\}$ subterm at position: for $p \in Pos(t)$: $t([]) = t, f(t_1,,t_k)([i] \circ p) = t_i(p)$ function symbol at position: for $p \in Pos(t)$: $f()([]) = f, f(t_1,,t_k)([i] \circ p) = t_i(p)$ (note: overloaded notation)	Positions, Replacements at position applications: subterm relation: $s \leq tiff \exists p \in Pos(t) : s = t(p)$ size of term: $ t = Pos(t) $ $t(p := s')$ for $p \in Pos(t)$: $t([] := s) = s, f(, t_i,)([l] \circ p := s) =$ $f(, t_i(p := s),).$
Variables, Substitutions term over signature Σ with variables from set X (disjoint from Σ): Term(Σ, X): $x \in X \Rightarrow x \in \text{Term}(\Sigma, X)$ and $\forall i : t_i \in \text{Term}(\Sigma, X) \Rightarrow f(t_1, \dots, t_k) \in \text{Term}(\Sigma, X)$ ground substitution: partial mapping $\sigma : X \hookrightarrow \text{Term}(\Sigma)$ extended to mapping $\sigma : \text{Term}(\Sigma, X) \to \text{Term}(\Sigma)$, written post-fix by $x\sigma = \sigma(x), f(t_1, \dots, t_k)\sigma = f(t_1\sigma, \dots, t_k\sigma)$	Term Rewriting rule $(I, r) \in \text{Term}(\Sigma, X)^2$ apply rule (I, r) at position p in term t $t \stackrel{(I,r),p}{\rightarrow} t'$ if $p \in \text{Pos}(t),$ $\exists \sigma : t(p) = l\sigma \land t(p := r\sigma) = t'$ rewrite system R is set of rules $t \rightarrow_R t'$ iff $\exists (I, r) \in R, p : t \stackrel{(I,r),p}{\rightarrow} t'$
String Rewriting as a special case • all symbols are unary • there is one nullary symbol "0" that never occurs in rules example $R = \{a(b(x)) \rightarrow b(a(x))\}$ over signature $\Sigma = \{a/1, b/1, 0/0\}$ • terms are in fact strings: $a(b(a(b(0)))) \sim abab \in \{a, b\}^*$ • a rule is a pair of strings, $a(b(x)) \rightarrow b(a(x) \sim ab \rightarrow ba$ • string rewriting system $R \subseteq (\Sigma^*)^2$ • string rewriting relation: $w \rightarrow_R w' \iff$ $\exists (l, r) \in R, p, q \in \Sigma^* : w = plq, prq = w'$	 Summary these are basic concepts, cf. also Baader/Nipkow you should work on the online exercises that require you to find derivations there is a highscore ranking: longer derivations are better (this is preparation for derivational complexity)