
Propositional Encoding of Constraints over
Tree-Shaped Data

Alexander Bau∗ Johannes Waldmann

F-IMN, HTWK Leipzig, Germany

July 3, 2013

∗ supported by an ESF grant

1 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Motivation
using a subset of Haskell for constraint system specifications

I in general: constraint system = formula in predicate logic
I here: ∃x : f (x), with f being quantifier-free
I search for a satisfying assignment for x by generic (i.e. problem

independent) techniques
I specification of predicate f as Haskell function

constraint :: (Int,Int) -> Bool
constraint (a,b) = a * b == 42

search for satisfying assignment through transformation of f to a
finite-domain constraint system

I domain: {0, 1}
I constraint system = formula in propositional logic
I Boolean satisfiablity problem (SAT)

2 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Motivation (II)
∃x : f (x) where f :: D -> Bool

I possible types D
I algebraic data types (Bool, Maybe a, [a], data T = ...)
I restrict depth of recursions

I specification of f
I pattern-matching, polymorphism, higher-order functions

advantages of using Haskell for constraint system specifications
I application of an established language in another paradigm
I reuse existing code
I simple testing of found solutions against original program
I comparison to similar approaches, e.g. Curry (Hanus et al.)

our contribution: implementation by compilation to SAT
I apply fast SAT solvers like Minisat (Een, Sörensson)

3 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Applications (Work in Progress)

I termination analysis for rewrite systems
I precedences for path orders
I coefficients for interpretations
I models for semantic labelling
I looping derivations

I computational biology (RNA design)

SAT is assembly language of constraint programming: one wants to use it,
but nobody wants to write it

SAT compilation gives
I correctness
I flexibility

4 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Example
data Bool = False | True
data Pair a b = Pair a b
data Nat = Z | S Nat

add x y = case x of { Z -> y; S x’ -> S (add x’ y) }

eq x y = case x of
Z -> case y of { Z -> True ; _ -> False }
S x’ -> case y of { S y’ -> eq x’ y’; _ -> False }

constraint (Pair x y) = eq (S (S (S Z))) (add x y)

--
Start producing CNF
CNF finished (#variables: 71, #clauses: 199)
Starting solver
Solver finished in 0.0 seconds (result: True)
Just (Pair Z (S (S (S Z))))

5 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Concept of Implementation

parametric constraint system

constraint p x = ...

for p given at runtime: search for satisfying assingment for x

1. compilation-time:
I transformation of constraint to a Haskell function that generates a

propositional formula
2. run-time:

2.1 generate propositional formula
2.2 solve formula by external SAT solver
2.3 reconstruct satisfying assingment

main challange: pattern matches on unknown data

6 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Usage

transformation of constraint using Template-Haskell during GHC’s
compilation time

$([d| ...
constraint (Pair x y) = eq (S (S (S Z)))

(add x y)
|] >>= runIO . configurable [] . compile

)

result :: IO (Maybe (Pair Nat Nat))
result = solveBoolean ... encConstraint

main = result >>= putStrLn . show

7 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Example (compiled constraint system)
encAdd = \encX_6 encY_7 ->

do bindCase_267 <- return encX_6
if isInvalid bindCase_267
then return bindCase_267
else do bindArgument_274 <- return encY_7

bindArgument_275 <-
let encX’_8 = constructorArgument 0 1 bindCase_267
in do bindArgument_272 <-

do bindArgument_269 <- return encX’_8
bindArgument_270 <- return encY_7
bindResult_268 <- encAdd bindArgument_269

bindArgument_270
return bindResult_268

bindResult_271 <- encSCons bindArgument_272
return bindResult_271

bindResult_273 <- caseOf bindCase_267 [bindArgument_274,
bindArgument_275]

return bindResult_273
...

8 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Data Transformation
abstract value is a tree that represents a set of concrete values

I each node contains propositional variables [x1, x2, . . .]
I they encode the index of a constructor

data Bool = False | True
[x1]

data Pair = Pair Bool Bool

[]

[x1] [x2]

Pair constructor

one Bool constructor each

data Either = Left Bool | Right Bool

[x1]

[x2]

Either construktor

Bool construktor

data List = Nil | Cons Bool List

[x1]

[x2]

[x3]

[x4]

[x5]

[x6]

[x7]

[x8]

[0]

9 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Program Transformation

pattern matches on unknown data generates clauses of the resulting
propositional formula

r,e,u,v :: Bool
let r = case e of { False -> u ; True -> v }

if
I abstract-value(env, compile(e)) = [xe]

I abstract-value(env, compile(u)) = [xu]

I abstract-value(env, compile(v)) = [xv]

then
I abstract-value(env, compile(r)) = [(xe → xu) ∧ (xe → xv)]

10 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

program transformation (II)

top-level constraint is applied to two abstract values
I encoded parameter p
I abstract value that represents the domain of the unknown x

I depth of abstract value restricts recursion
optimizations

I assumption: smaller formula → easier to solve
I direct evaluation of pattern-matches on known data (represented by

Boolean constants)
I do not generate formulas for unreached branches

I memoization of function calls during abstract evaluation
I built-in operations for fixed-width binary numbers

11 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Example - Find Looping Derivations in SRS

type Symbol = [Bool]
type Word = [Symbol]
type Rule = (Word , Word)
type SRS = [Rule]

-- Step p (l,r) s represents p ++ l ++ s --> p ++ r ++ s
data Step = Step Word Rule Word

data Looping_Derivation = Looping_Derivation Word [Step] Word

constraint :: SRS -> Looping_Derivation -> Bool
constraint srs (Looping_Derivation pre d suf) =

conformant srs d && eqWord (pre ++ start d ++ suf) (result d)
...

→ code size: 100 lines
12 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Example - Find Looping Derivations in SRS

> ./ttt2 -s ’dp;loop -dp -r 16 -c 16’ -pstat \
SRS/Gebhardt/03.srs

cnf generated: 23759 vars, 39541 clauses (0.746666)
cnf solved (5.373332)

> CO4/Test/Loop +RTS -K1G -RTS 16 16 SRS/Gebhardt/03.srs

CNF finished (#variables: 132954, #clauses: 450132)
Solver finished in 42.276663 seconds (result: True)

13 / 1

Propositional Encoding of Constraints over Tree-Shaped Data

Conclusion

I use a subset of Haskell for constraint system specifications
I transformation into satisfiablity problem of propositional formulas
I application 1: terminations analysis of term rewriting systems

I precedences for path orders
I coefficients for interpretations
I models for semantic labelling
I looping derivations

corresponding Haskell code is already available (CeTA)
I application 2: RNA design in computational biology
I main challenges:

smaller formulas, faster compilation, bigger Haskell subset
I try: https://github.com/apunktbau/co4
I continue: http://arxiv.org/abs/1305.4957

14 / 1

