Benchmarks and Competitions in Termination, SAT and SMT Workshop Symbolic Data, Leipzig, 2012 Johannes Waldmann ¹ December 14, 2012	Rewrite Systems and Termination • rewrite system R: set of rules $(VAR \times y)$ (RULES $D(t) \rightarrow 1$ $D(1) \rightarrow 0$ $D(+(x,y)) \rightarrow +(D(x), D(y))$ $D(*(x,y)) \rightarrow +(*(y,D(x)), *(x,D(y)))$ • rewrite step \rightarrow_R : apply rule to subterm • rewriting is a (non-deterministic) model of computation • application: programs on symbolic data (e.g., polynomials, programs, specifications) • R is terminating := \rightarrow_R is well-founded (there is no infinite computation)
 Termination Data Base & Competition goal: evaluation and comparison of tools that analyze termination of rewriting input: <i>R</i>, output: YES/NO + "proof" trace started in 2003 (as a session of the Workshop on Termination, 1993) TPDB (termination problems data base): use common syntax for rewrite relations rules, strategy (innermost,), theory (AC,) Termcomp (termination competition): for each category, run all tools on all problems. executed on one dedicated server (then in Paris, now in Innsbruck), present results on web page 	 Termination Community & Infrastruct. Termination Workshop, Conference RTA by the way, submit papers for RTA'13, (Eindhoven, June 22–24; Deadline: February 1), we absolutely welcome reports on applications of rewriting (e.g., in Computer algebra) mailing list (mainly) for tool authors Wiki http://termination-portal.org/ contains specifications, reports, links to data current developments: better results data mining and presentation move to Star-Exec execution service
 Competitions All Around many computational logic communities with well-established competitions, e.g., theorem proving (CASC, TPTP) http://www.cs.miami.edu/~tptp/CASC/ boolean satisfiability (SAT) satisfiability modulo theories (SMT) satisfiability modulo theories (SMT) they all have domain-specific input syntax and semantics specification standards for what is an acceptable proof trace (from <i>none</i> to <i>informal</i> to <i>verifiable</i>) methods of selecting competition problems algorithms for scoring of results 	 Example: SAT input: a formula in propositional logic in conjunctive normal form output: a satisfying assignment typical method for solving: DPLL (backtracking, with constraint propagation) with CDCL (conflict driven clause learning) performs surprisingly well (despite NP-completeness) strong industry backing (motivated by circuit design verification, before production) benchmarks can be huge (10⁶ variables) bi-annually: SAT competition, SAT race http://www.satcompetition.org/
Example: SMT • given in advance: an algebra A • input: quantifier-free formula F in predicate logic • output: an assignment $\sigma : Var(F) \rightarrow dom(A)$ such that value $(A, F, \sigma) = True$ • examples • QF_LRA linear real arithmetic (boolean combination of linear inequalities over the reals) • QF_BV bitvectors (= machine numbers) • gr_BV bitvectors (= machine numbers) • strong industry interest (software verification), e.g., http://z3.codeplex.com/ • SMT-LIB, SMT-COMP (annual) http://smtcomp.sourceforge.net/ • application of SMT in termination analysis	 The Star-Exec Project http://www.starexec.org/starexec/public/about.jsp goal: provide a domain-agnostic exeution platform (software and hardware) for running competitions in computational logic directed by Starexec host (U.Iowa) and advisory board (representing the different communities) uses some meta-model (ontolgy) of competitions (benchmarks, tools, results) funding is secured, hardware is (partially) there, software is in beta state some open design issues, mainly on how much service to provide on the platform, and what to leave for the communities

Summary

- there is a wealth of experience with collecting and maintaining benchmarks
- mostly motivated by their use in competitions
- most of this is domain-specific
- Star-Exec tries to unify this over several domains (but so far it's not proven in practice)
- even if done for each domain separately: clear specification of semantics and syntax is tremendously useful
- (I think) benchmarks should be human-readable and -writable. (XML is bad, LISP is good)

Johannes Waldmann () Benchmarks and Competitions in Termination December 14, 2012 9 / 9