
Starexec for Termination

Johannes Waldmann, HTWK Leipzig, Germany

SE’12

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 1 / 11

Summary: Termination Competitions
Automatically decide termination of programs
in various models of computation.
yearly since 2003, 23 solvers, 9 categories, 36
people, http://www.termination-portal.org/

basic model (easy for Star-Exec):
I input (benchmark): a program
I out: YES/NO + proof trace (informal or formal)

extensions (challenging for Star-Exec?):
I (polynomial) derivational complexity
I machine verification of formal proof traces

as part of the competition

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 2 / 11

Summary: Termination Competitions
Automatically decide termination of programs
in various models of computation.
yearly since 2003, 23 solvers, 9 categories, 36
people, http://www.termination-portal.org/

basic model (easy for Star-Exec):
I input (benchmark): a program
I out: YES/NO + proof trace (informal or formal)

extensions (challenging for Star-Exec?):
I (polynomial) derivational complexity
I machine verification of formal proof traces

as part of the competition

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 2 / 11

Summary: Termination Competitions
Automatically decide termination of programs
in various models of computation.
yearly since 2003, 23 solvers, 9 categories, 36
people, http://www.termination-portal.org/

basic model (easy for Star-Exec):
I input (benchmark): a program
I out: YES/NO + proof trace (informal or formal)

extensions (challenging for Star-Exec?):
I (polynomial) derivational complexity
I machine verification of formal proof traces

as part of the competition

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 2 / 11

Termcomp Categories
given by (not completely orthogonal) combination of

I models of computation:
term rewriting (first order, higher order), string
rewriting, Prolog, Haskell, Java Bytecode.

I variants of models:
e.g., Prolog with/without Cut, rewriting modulo
theory (AC,. . . ), restricted by strategy

I question:
I termination: YES/NO
I polynomial derivational complexity: YES(degree)/NO

I proof trace: formal or not

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 3 / 11

Termcomp Categories
given by (not completely orthogonal) combination of

I models of computation:
term rewriting (first order, higher order), string
rewriting, Prolog, Haskell, Java Bytecode.

I variants of models:
e.g., Prolog with/without Cut, rewriting modulo
theory (AC,. . . ), restricted by strategy

I question:
I termination: YES/NO
I polynomial derivational complexity: YES(degree)/NO

I proof trace: formal or not

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 3 / 11

Termcomp Categories
given by (not completely orthogonal) combination of

I models of computation:
term rewriting (first order, higher order), string
rewriting, Prolog, Haskell, Java Bytecode.

I variants of models:
e.g., Prolog with/without Cut, rewriting modulo
theory (AC,. . . ), restricted by strategy

I question:
I termination: YES/NO
I polynomial derivational complexity: YES(degree)/NO

I proof trace: formal or not

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 3 / 11

Termcomp Categories
given by (not completely orthogonal) combination of

I models of computation:
term rewriting (first order, higher order), string
rewriting, Prolog, Haskell, Java Bytecode.

I variants of models:
e.g., Prolog with/without Cut, rewriting modulo
theory (AC,. . . ), restricted by strategy

I question:
I termination: YES/NO
I polynomial derivational complexity: YES(degree)/NO

I proof trace: formal or not

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 3 / 11



Termcomp Categories
given by (not completely orthogonal) combination of

I models of computation:
term rewriting (first order, higher order), string
rewriting, Prolog, Haskell, Java Bytecode.

I variants of models:
e.g., Prolog with/without Cut, rewriting modulo
theory (AC,. . . ), restricted by strategy

I question:
I termination: YES/NO
I polynomial derivational complexity: YES(degree)/NO

I proof trace: formal or not

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 3 / 11

Termcomp Categories
given by (not completely orthogonal) combination of

I models of computation:
term rewriting (first order, higher order), string
rewriting, Prolog, Haskell, Java Bytecode.

I variants of models:
e.g., Prolog with/without Cut, rewriting modulo
theory (AC,. . . ), restricted by strategy

I question:
I termination: YES/NO
I polynomial derivational complexity: YES(degree)/NO

I proof trace: formal or not

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 3 / 11

termcomp platform and data
I developed and hosted at research group

Computational Logic at U Innsbruck, Austria
I used in competitions since 2008
I cummulative for 2008–2011 competitions: 8950

benchmarks (TPDB), 83 solver versions, 114194
results (job pairs), 10750 formal proof traces

I a “full run” took 419 hours
I hard/software: machine with 16 cores, CentOS,

JBoss/Seam, Postgres, JSP.
I we are willing to share experience and code

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 4 / 11

termcomp platform and data
I developed and hosted at research group

Computational Logic at U Innsbruck, Austria
I used in competitions since 2008
I cummulative for 2008–2011 competitions: 8950

benchmarks (TPDB), 83 solver versions, 114194
results (job pairs), 10750 formal proof traces

I a “full run” took 419 hours
I hard/software: machine with 16 cores, CentOS,

JBoss/Seam, Postgres, JSP.
I we are willing to share experience and code

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 4 / 11

termcomp platform and data
I developed and hosted at research group

Computational Logic at U Innsbruck, Austria
I used in competitions since 2008
I cummulative for 2008–2011 competitions: 8950

benchmarks (TPDB), 83 solver versions, 114194
results (job pairs), 10750 formal proof traces

I a “full run” took 419 hours
I hard/software: machine with 16 cores, CentOS,

JBoss/Seam, Postgres, JSP.
I we are willing to share experience and code

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 4 / 11

termcomp platform and data
I developed and hosted at research group

Computational Logic at U Innsbruck, Austria
I used in competitions since 2008
I cummulative for 2008–2011 competitions: 8950

benchmarks (TPDB), 83 solver versions, 114194
results (job pairs), 10750 formal proof traces

I a “full run” took 419 hours
I hard/software: machine with 16 cores, CentOS,

JBoss/Seam, Postgres, JSP.
I we are willing to share experience and code

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 4 / 11

termcomp platform and data
I developed and hosted at research group

Computational Logic at U Innsbruck, Austria
I used in competitions since 2008
I cummulative for 2008–2011 competitions: 8950

benchmarks (TPDB), 83 solver versions, 114194
results (job pairs), 10750 formal proof traces

I a “full run” took 419 hours
I hard/software: machine with 16 cores, CentOS,

JBoss/Seam, Postgres, JSP.
I we are willing to share experience and code

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 4 / 11

termcomp platform and data
I developed and hosted at research group

Computational Logic at U Innsbruck, Austria
I used in competitions since 2008
I cummulative for 2008–2011 competitions: 8950

benchmarks (TPDB), 83 solver versions, 114194
results (job pairs), 10750 formal proof traces

I a “full run” took 419 hours
I hard/software: machine with 16 cores, CentOS,

JBoss/Seam, Postgres, JSP.
I we are willing to share experience and code

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 4 / 11



Nice to have (and we already have it)
I data model:

I Solver is a set of Implementations
I solver is registered for competition category
I Team is a set of persons
I team maintains set of solvers
I teams have quotas (CPU time, disk space)

I after upload of new implementation, it is
automatically run on a subset of benchmarks

I displays:
I termcomp start page show category summaries of

current competition
I and “news feed” of 10 most recent “jobs pairs”
I category results shown as table, configurable

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 5 / 11

Nice to have (and we already have it)
I data model:

I Solver is a set of Implementations
I solver is registered for competition category
I Team is a set of persons
I team maintains set of solvers
I teams have quotas (CPU time, disk space)

I after upload of new implementation, it is
automatically run on a subset of benchmarks

I displays:
I termcomp start page show category summaries of

current competition
I and “news feed” of 10 most recent “jobs pairs”
I category results shown as table, configurable

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 5 / 11

Nice to have (and we already have it)
I data model:

I Solver is a set of Implementations
I solver is registered for competition category
I Team is a set of persons
I team maintains set of solvers
I teams have quotas (CPU time, disk space)

I after upload of new implementation, it is
automatically run on a subset of benchmarks

I displays:
I termcomp start page show category summaries of

current competition
I and “news feed” of 10 most recent “jobs pairs”
I category results shown as table, configurable

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 5 / 11

Important to have: Validation
termination competition consists of two phases:

1. solvers run on benchmarks, emit proof traces
2. matcher (postproc.) checks that trace matches

benchmark
3. validators run on traces

(non)termination proof trace ≈ model, or unsat core.
automatic validation is highly recommended:

I advance formalized mathematics (validator
source code is extracted from formal proof)

I discover bugs in solvers
We (termcomp) definitely need it, and others
(SAT/SMT) should want it.

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 6 / 11

Important to have: Validation
termination competition consists of two phases:

1. solvers run on benchmarks, emit proof traces
2. matcher (postproc.) checks that trace matches

benchmark
3. validators run on traces

(non)termination proof trace ≈ model, or unsat core.
automatic validation is highly recommended:

I advance formalized mathematics (validator
source code is extracted from formal proof)

I discover bugs in solvers
We (termcomp) definitely need it, and others
(SAT/SMT) should want it.

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 6 / 11

Important to have: Validation
termination competition consists of two phases:

1. solvers run on benchmarks, emit proof traces
2. matcher (postproc.) checks that trace matches

benchmark
3. validators run on traces

(non)termination proof trace ≈ model, or unsat core.
automatic validation is highly recommended:

I advance formalized mathematics (validator
source code is extracted from formal proof)

I discover bugs in solvers
We (termcomp) definitely need it, and others
(SAT/SMT) should want it.

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 6 / 11

Important to have: detailed scoring

I for complexity categories, solvers answer
YES (d1,d2) meaning Ω(nd1) ∩O(nd2).

I Scoring for each benchmark depends on
inclusion between answers of solvers.

I Scorer must see, for each benchmark, all
solver’s outputs.

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 7 / 11

How could this be realized?
Star-Exec’s “post-processor” model extended:

I individual post-processor should see
I (stdout separately from stderr)
I also the original benchmark (to create or check the

validation problem for the second stage)
I bulk (display/scoring) post-processor should

see, per benchmark, the set of all
(post-processed) solver outputs

Implementation:
I make Star-Exec open-source,
I we fork it, we implement the above (we already

have it), you merge it back
Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 8 / 11



Yes We Want This
already planned for Star-Exec, and we are looking
forward to using it:

I stable and session/login-independent URLs for
each data item:
benchmark, solver, job (collection), job pair

I flexible query language, for the full data set.
e.g., “the 10 smallest problems from category X
that were unsolved in all previous competitions”,
“all results where solver Y’s output contains the
words Z”

I should offer queries everywhere (at each point
in the GUI where some subset is selected)

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 9 / 11

And some more . . .
helpful for competition organizers, platform users
(and their students):

I upload (and some checking) of new benchmarks
(to be considered for future competitions)

I (controlled, random) selection of benchmarks for
competitions

I import of legacy data (results of previous
competitions), so it can be queried

I “on-the-fly” jobs: edit/upload a benchmark and
run some solvers (cf. http://rise4fun.com/z3),
store interesting (small and hard) submissions

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 10 / 11

Conclusion

I We (Termination) support the idea behind
Star-Exec, and intend to use it.

I The current design does not fit all of the
Termination Competition categories

I second stage for validation,
I scoring for complexity

probably there are manual (or script-able)
work-arounds

I We understand that resources (developer time)
are limited, so . . . open-source it.

Johannes Waldmann, HTWK Leipzig, Germany () Starexec for Termination SE’12 11 / 11


