
Constraint Programming for
Secondary Structure Prediction

Johannes Waldmann 1

October 5, 2012

1Fakultät IMN, HTWK Leipzig, Germany
Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 1 / 18

Secondary Structure Prediction
input: primary structure (RNA sequence)

GGGAAAUGGACUGAGCGGCGCCGACCGCCAAACAACCGGCA

output: encoding of secondary structure (base pairs)

:[[:::(((:]]:::(((:[[[[:))))))::::::]]]]:

value: sum of stack lengths

1 + 2 + 2 + 3 = 8

This is a constraint satisfaction problem (if lower
value bound is given),
a constrained optimization problem (if value is to be
maximized).

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 2 / 18

Approaches for solving

I complete enumeration (hopeless)
I restrict to underlying models with efficient

algorithms,
e.g., (multiple) context-free grammar and CYK
(tabled) parsing

I (this talk): handle the constraint satisfaction
problem as-is

I slogan: don’t fear NP-completeness, hail Minisat
(= efficient solver for Boolean satisfiability
problems)

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 3 / 18

Constraint Program (Example)
P,Q,R,S ∈ Z,
0 < P ∧ 0 ≤ Q ∧ 0 < R ∧ 0 ≤ S ∧ PS + Q > RQ + S
Textual representation (SMT2 standard)
(set-logic QF_NIA)
(set-option :produce-models true)
(declare-fun P () Int) (declare-fun Q () Int)
(declare-fun R () Int) (declare-fun S () Int)
(assert (and (< 0 P) (<= 0 Q) (< 0 R) (<= 0 S)))
(assert (> (+ (* P S) Q) (+ (* R Q) S)))
(check-sat)(get-value (P Q R S))

Solver (research.microsoft.com/projects/z3/)

$ z3 con-exp.smt2
sat ((P 14) (Q 9) (R 11) (S 7))

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 4 / 18

Constraint Programming
I constraint program: a formula P in predicate

calculus, containing
I predefined functions and relations from some

domain (e.g., linear or polynomial equalities or
inequalities)

I free variables (unknowns) v1, . . .

I solution: an assignment σ (mapping from
variables to values) such that Pσ is true

I constraint solver: computes σ from P
I the application programmer benefits from the

highly sophisticated domain-specific search
algorithms in the solvers (e.g., Gauss, Simplex,
Qepcad, Nelson-Oppen, DPLL(T))

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 5 / 18

Boolean Constraints (Example)
x1, x2, x3, x4 ∈ B
x3 ↔ (x1 ⊕ x2) ∧ x4 ↔ (x1 ∧ x2) ∧ x4

equivalent conjunctive normal form:
(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)
∧(x4 ∨ x1) ∧ (x4 ∨ x2) ∧ (x1 ∨ x2 ∨ x4) ∧ x4

textual representation (DIMACS file format)
p cnf 4 8
1 -2 3 0 -1 2 3 0 1 2 -3 0 -1 -2 -3 0
-4 1 0 -4 2 0 -1 -2 4 0 4 0

Solver (http://minisat.se/)
$ minisat sat-exp.dimacs /dev/stdout
SAT 1 2 -3 4 0

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 6 / 18

Boolean Constraints (SAT)
I domain (for values and variables): B = {0,1}
I deciding satisfiability of Boolean formulas is

NP-complete
unless P = NP, there is no algorithm that is
efficient in all cases

I DPLL (Davis-Putnam-Logemann-Loveland) with
CDCL (conflict driven clause learning) is
surprisingly efficient in a lot of cases.

I industrial-strength solvers (used in verification of
hardware and software), SAT competitions, . . .

I finite domain constraint problems can be solved
by transformation to SAT.

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 7 / 18

Finite Domain (FD) Constraints
I SAT: unknowns are Booleans B = {0,1}
I FD: unknowns from some finite set, e.g.,

Colour = {empty,black,white}
I unary encoding: Colour ↪→ B3

empty = (1,0,0),black = (0,1,0),wh. = (0,0,1)
I binary encoding: Colour ↪→ B3

empty = (0,0),black = (0,1),white = (1,0)
I can be used directly for graph (colouring)

problems, parsing problems, etc.
I for problems with infinite (or large) domain, try to

find some FD approximation
(represent numbers in some fixed bit width)

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 8 / 18



SAT Coding Expl.: State Transitions
[0,0,2,2,2,2,1,1,1,1]
[1,1,2,2,2,2,1,0,0,1]
[1,1,2,2,0,0,1,2,2,1]
[1,0,0,2,1,2,1,2,2,1]
[1,2,1,2,1,2,1,2,0,0]

I unknowns: xt ,p where
t = time, p =position

I obvious initial/final
condition, transitions:

∧

t

∨

a,b

∧

p




p /∈ {a,a + 1,b,b + 1} ⇒ xt ,p = xt+1,p
∧ xt ,a = xt+1,b ∧ xt ,a+1 = xt+1,b+1
∧ xt+1,a = 0 ∧ xt+1,a+1 = 0
∧ xt ,b = 0 ∧ xt ,b+1 = 0




improve to
∧

t

∃r , s ∈ {1,2} (
∨

a

∧

p

. . . ) ∧ (
∨

b

∧

p

. . . )

complete source code (100 lines) http:

//dfa.imn.htwk-leipzig.de/cgi-bin/gitweb.cgi?p=biosat.git;a=blob;f=rewriting/C.hs;hb=HEAD

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 9 / 18

SAT encoding for Sec. Struc. Pred.
model: disjoint circular matchings in graphs
input: G = (V ,E) where V = positions in RNA string,
E = set of all possible base pairs; number k ∈ N
output: sequence M1, . . . ,Mk with Mi ⊆ E
such that

I M :=
⋃

i Mi is a matching (each v ∈ V is incident
to at most one edge in M)

I each Mi is circular (no crossing edges w.r.t. the
ordering on V )

each Mi is an edge set, thus a relation, thus a
boolean matrix Mi : V × V → B
the unknowns of the constraint system are the
entries of these matrices.

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 10 / 18

Related Work

I Unyanee Poolsap, Yuki Kato, and Tatsuya
Akutsu: Prediction of RNA secondary structure
with pseudoknots using integer programming,
BMC Bioinformatics. 2009; 10(Suppl 1): S38.

I Ganesh et al.: Lynx: A Programmatic SAT
Solver for the RNA-Folding Problem, SAT’12
using the direct encoding (l4 clauses) for the
non-crossing condition

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 11 / 18

Encoding details
I union: M =

⋃
i Mi

M(p,q) :=
∨

i Mi(p,q)

I possible base pairs M ⊆ E :∧{¬M(p,q) | (w [p],w [q]) /∈
{AU,UA,CG,GC,GU,UG}}

I M is matching:∧{¬(M(p,q) ∧M(q, r)) | p 6= r}
I Mi is circular (non-crossing):∧{¬(Mi(p,q) ∧Mi(r , s)) | p < r < q < s}
I number of variables: l2k , formula size: Θ(l4k).

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 12 / 18

Encoding for CYK parsing
. . . to reduce the l4 formula size
use table (relation) T with specification
T (p,q) ⇐⇒ w [p..q] is correctly parenthesized:

I T (p,p) ⇐⇒ p /∈ domain M ∪ range M
I T (p,q) ⇐⇒

(M(p,q)∧T (p+1,q−1))∨∨h T (p,h)∧T (h+1,q)
I M(p,q)⇒ T (p,q), M(1, l)

l2 variables, l3 formula size
source code: http://dfa.imn.htwk-leipzig.de/cgi-bin/gitweb.cgi?p=biosat.git;a=blob;f=ssp/code/

SSP/Graph/Encode.hs;hb=HEAD Note: cannot apply CYK to the
original problem, since we need to guess the type of
parentheses. (this parsing problem is NP-hard)

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 13 / 18

Encoding Numeric Valuation
For valuation of (M1, . . . ,Mk), consider stacks
(groups of parallel edges in M =

⋃
i Mi)

I Define S : V → B by
S(p) :=

∨
q M(p,q) ∧M(p + 1,q − 1),

I count number of 1 in (S(1), . . . ,S(l))
by repeated binary addition
(using half adder/full adder circuits represented
as constraint systems)

I compare with a given bound
v ≥ B ⇐⇒ ∃d : v = B + d

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 14 / 18

Solving the Optimization Problem

I write the constraint system C(P,S,V ) =
“S is an admissible solution for problem P
with value ≥ V ”

I to find max{V | ∃S : C(P,S,V )},
determine a finite feasible range for V
(e.g., 0 . . . length of input)

I use iteration V = 0,1,2, . . .
or bisection V = l/2,3l/4, . . .

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 15 / 18

Prototype Implementation

of Secondary Structure Prediction with fixed number
of parenthesis types
is proof-of-concept, as a basis for experimentation:

I source: git:
//dfa.imn.htwk-leipzig.de/srv/git/biosat

I using Haskell library Satchmo
https://github.com/jwaldmann/satchmo to
generate SAT constraint system and decode result

I solver: https://github.com/niklasso/minisat

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 16 / 18



Program Inversion

Constraint system C(P,S,V ) =

“S is an admissible solution for problem P
with value ≥ V”

can be used for:

I given P,V , determine S
e.g., RNA parsing (sec. struct. pred.)

I given S,V , determine P
e.g., RNA design

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 17 / 18

Conclusion/Claims
I constraint programming is easy: especially for

non-programmers, since it is declarative
I constraint programming is powerful:

use generic domain-specific solver for
application-specific program/problem

I constraint programming is flexible:
easily add/remove/change/invert constraints
(much easier than change an
application-specific algorithm)

I write the constraint program in an EDSL
(embedded domain specific language)
that takes care of encoding and decoding

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 18 / 18


