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Secondary Structure Prediction
input: primary structure (RNA sequence)

GGGAAAUGGACUGAGCGGCGCCGACCGCCAAACAACCGGCA

output: encoding of secondary structure (base pairs)

:[[:::(((:]]:::(((:[[[[:))))))::::::]]]]:

value: sum of stack lengths

1 + 2 + 2 + 3 = 8

This is a constraint satisfaction problem (if lower
value bound is given),
a constrained optimization problem (if value is to be
maximized).
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Approaches for solving

I complete enumeration (hopeless)
I restrict to underlying models with efficient

algorithms,
e.g., (multiple) context-free grammar and CYK
(tabled) parsing

I (this talk): handle the constraint satisfaction
problem as-is

I slogan: don’t fear NP-completeness, hail Minisat
(= efficient solver for Boolean satisfiability
problems)
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Constraint Program (Example)
P,Q,R,S ∈ Z,
0 < P ∧ 0 ≤ Q ∧ 0 < R ∧ 0 ≤ S ∧ PS + Q > RQ + S
Textual representation (SMT2 standard)
(set-logic QF_NIA)
(set-option :produce-models true)
(declare-fun P () Int) (declare-fun Q () Int)
(declare-fun R () Int) (declare-fun S () Int)
(assert (and (< 0 P) (<= 0 Q) (< 0 R) (<= 0 S)))
(assert (> (+ (* P S) Q) (+ (* R Q) S)))
(check-sat)(get-value (P Q R S))

Solver (research.microsoft.com/projects/z3/)

$ z3 con-exp.smt2
sat ((P 14) (Q 9) (R 11) (S 7))
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Constraint Programming
I constraint program: a formula P in predicate

calculus, containing
I predefined functions and relations from some

domain (e.g., linear or polynomial equalities or
inequalities)

I free variables (unknowns) v1, . . .

I solution: an assignment σ (mapping from
variables to values) such that Pσ is true

I constraint solver: computes σ from P
I the application programmer benefits from the

highly sophisticated domain-specific search
algorithms in the solvers (e.g., Gauss, Simplex,
Qepcad, Nelson-Oppen, DPLL(T))
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Boolean Constraints (Example)
x1, x2, x3, x4 ∈ B
x3 ↔ (x1 ⊕ x2) ∧ x4 ↔ (x1 ∧ x2) ∧ x4

equivalent conjunctive normal form:
(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)
∧(x4 ∨ x1) ∧ (x4 ∨ x2) ∧ (x1 ∨ x2 ∨ x4) ∧ x4

textual representation (DIMACS file format)
p cnf 4 8
1 -2 3 0 -1 2 3 0 1 2 -3 0 -1 -2 -3 0
-4 1 0 -4 2 0 -1 -2 4 0 4 0

Solver (http://minisat.se/)
$ minisat sat-exp.dimacs /dev/stdout
SAT 1 2 -3 4 0
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Boolean Constraints (SAT)
I domain (for values and variables): B = {0,1}
I deciding satisfiability of Boolean formulas is

NP-complete
unless P = NP, there is no algorithm that is
efficient in all cases

I DPLL (Davis-Putnam-Logemann-Loveland) with
CDCL (conflict driven clause learning) is
surprisingly efficient in a lot of cases.

I industrial-strength solvers (used in verification of
hardware and software), SAT competitions, . . .

I finite domain constraint problems can be solved
by transformation to SAT.
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Finite Domain (FD) Constraints
I SAT: unknowns are Booleans B = {0,1}
I FD: unknowns from some finite set, e.g.,

Colour = {empty,black,white}
I unary encoding: Colour ↪→ B3

empty = (1,0,0),black = (0,1,0),wh. = (0,0,1)
I binary encoding: Colour ↪→ B3

empty = (0,0),black = (0,1),white = (1,0)
I can be used directly for graph (colouring)

problems, parsing problems, etc.
I for problems with infinite (or large) domain, try to

find some FD approximation
(represent numbers in some fixed bit width)
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SAT Coding Expl.: State Transitions
[0,0,2,2,2,2,1,1,1,1]
[1,1,2,2,2,2,1,0,0,1]
[1,1,2,2,0,0,1,2,2,1]
[1,0,0,2,1,2,1,2,2,1]
[1,2,1,2,1,2,1,2,0,0]

I unknowns: xt ,p where
t = time, p =position

I obvious initial/final
condition, transitions:

∧

t

∨

a,b

∧

p




p /∈ {a,a + 1,b,b + 1} ⇒ xt ,p = xt+1,p
∧ xt ,a = xt+1,b ∧ xt ,a+1 = xt+1,b+1
∧ xt+1,a = 0 ∧ xt+1,a+1 = 0
∧ xt ,b = 0 ∧ xt ,b+1 = 0




improve to
∧

t

∃r , s ∈ {1,2} (
∨

a

∧

p

. . . ) ∧ (
∨

b

∧

p

. . . )

complete source code (100 lines) http:

//dfa.imn.htwk-leipzig.de/cgi-bin/gitweb.cgi?p=biosat.git;a=blob;f=rewriting/C.hs;hb=HEAD
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SAT encoding for Sec. Struc. Pred.
model: disjoint circular matchings in graphs
input: G = (V ,E) where V = positions in RNA string,
E = set of all possible base pairs; number k ∈ N
output: sequence M1, . . . ,Mk with Mi ⊆ E
such that

I M :=
⋃

i Mi is a matching (each v ∈ V is incident
to at most one edge in M)

I each Mi is circular (no crossing edges w.r.t. the
ordering on V )

each Mi is an edge set, thus a relation, thus a
boolean matrix Mi : V × V → B
the unknowns of the constraint system are the
entries of these matrices.
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Related Work

I Unyanee Poolsap, Yuki Kato, and Tatsuya
Akutsu: Prediction of RNA secondary structure
with pseudoknots using integer programming,
BMC Bioinformatics. 2009; 10(Suppl 1): S38.

I Ganesh et al.: Lynx: A Programmatic SAT
Solver for the RNA-Folding Problem, SAT’12
using the direct encoding (l4 clauses) for the
non-crossing condition
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Encoding details
I union: M =

⋃
i Mi

M(p,q) :=
∨

i Mi(p,q)

I possible base pairs M ⊆ E :∧{¬M(p,q) | (w [p],w [q]) /∈
{AU,UA,CG,GC,GU,UG}}

I M is matching:∧{¬(M(p,q) ∧M(q, r)) | p 6= r}
I Mi is circular (non-crossing):∧{¬(Mi(p,q) ∧Mi(r , s)) | p < r < q < s}
I number of variables: l2k , formula size: Θ(l4k).
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Encoding for CYK parsing
. . . to reduce the l4 formula size
use table (relation) T with specification
T (p,q) ⇐⇒ w [p..q] is correctly parenthesized:

I T (p,p) ⇐⇒ p /∈ domain M ∪ range M
I T (p,q) ⇐⇒

(M(p,q)∧T (p+1,q−1))∨∨h T (p,h)∧T (h+1,q)
I M(p,q)⇒ T (p,q), M(1, l)

l2 variables, l3 formula size
source code: http://dfa.imn.htwk-leipzig.de/cgi-bin/gitweb.cgi?p=biosat.git;a=blob;f=ssp/code/

SSP/Graph/Encode.hs;hb=HEAD Note: cannot apply CYK to the
original problem, since we need to guess the type of
parentheses. (this parsing problem is NP-hard)

Johannes Waldmann () Constraint Programming for Secondary Structure Prediction October 5, 2012 13 / 18

Encoding Numeric Valuation
For valuation of (M1, . . . ,Mk), consider stacks
(groups of parallel edges in M =

⋃
i Mi)

I Define S : V → B by
S(p) :=

∨
q M(p,q) ∧M(p + 1,q − 1),

I count number of 1 in (S(1), . . . ,S(l))
by repeated binary addition
(using half adder/full adder circuits represented
as constraint systems)

I compare with a given bound
v ≥ B ⇐⇒ ∃d : v = B + d
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Solving the Optimization Problem

I write the constraint system C(P,S,V ) =
“S is an admissible solution for problem P
with value ≥ V ”

I to find max{V | ∃S : C(P,S,V )},
determine a finite feasible range for V
(e.g., 0 . . . length of input)

I use iteration V = 0,1,2, . . .
or bisection V = l/2,3l/4, . . .
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Prototype Implementation

of Secondary Structure Prediction with fixed number
of parenthesis types
is proof-of-concept, as a basis for experimentation:

I source: git:
//dfa.imn.htwk-leipzig.de/srv/git/biosat

I using Haskell library Satchmo
https://github.com/jwaldmann/satchmo to
generate SAT constraint system and decode result

I solver: https://github.com/niklasso/minisat
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Program Inversion

Constraint system C(P,S,V ) =

“S is an admissible solution for problem P
with value ≥ V”

can be used for:

I given P,V , determine S
e.g., RNA parsing (sec. struct. pred.)

I given S,V , determine P
e.g., RNA design
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Conclusion/Claims
I constraint programming is easy: especially for

non-programmers, since it is declarative
I constraint programming is powerful:

use generic domain-specific solver for
application-specific program/problem

I constraint programming is flexible:
easily add/remove/change/invert constraints
(much easier than change an
application-specific algorithm)

I write the constraint program in an EDSL
(embedded domain specific language)
that takes care of encoding and decoding
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