Constraint Programming for Secondary Structure Prediction Johannes Waldmann ¹ October 5, 2012	Secondary Structure Predictioninput: primary structure (RNA sequence)GGGAAUGGACUGAGCGGCGCCGACCGCCAACAACCGGCAoutput: encoding of secondary structure (base pairs):[[:::(((:]]:::(((:[[[:))))))::::::]]]]:value: sum of stack lengths $1 + 2 + 2 + 3 = 8$ This is a constraint satisfaction problem (if lower value bound is given),a constrained optimization problem (if value is to be maximized)
 Approaches for solving complete enumeration (hopeless) restrict to underlying models with efficient algorithms, e.g., (multiple) context-free grammar and CYK (tabled) parsing (this talk): handle the constraint satisfaction problem as-is slogan: don't fear NP-completeness, hail Minisat (= efficient solver for Boolean satisfiability problems) 	$\begin{array}{l} \hline \textbf{Constraint Program (Example)} \\ P,Q,R,S \in \mathbb{Z}, \\ 0 < P \land 0 \leq Q \land 0 < R \land 0 \leq S \land PS + Q > RQ + S \\ \hline \textbf{Textual representation (SMT2 standard)} \\ (set-logic QF_NIA) \\ (set-option :produce-models true) \\ (declare-fun P () Int) (declare-fun Q () Int) \\ (declare-fun R () Int) (declare-fun S () Int) \\ (assert (and (< 0 P) (<= 0 Q) (< 0 R) (<= 0 S))) \\ (assert (> (+ (* P S) Q) (+ (* R Q) S))) \\ (check-sat) (get-value (P Q R S)) \\ \hline \textbf{Solver (research.microsoft.com/projects/z3/)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Constraint Programming • constraint program: a formula <i>P</i> in predicate calculus, containing • predefined functions and relations from some domain (e.g., linear or polynomial equalities or inequalities) • free variables (unknowns) $v_1,$ • solution: an assignment σ (mapping from variables to values) such that $P\sigma$ is true • constraint solver: computes σ from <i>P</i> • the <i>application</i> programmer benefits from the highly sophisticated <i>domain</i> -specific search algorithms in the solvers (e.g., Gauss, Simplex, Qepcad, Nelson-Oppen, DPLL(T))	$\begin{array}{l} \textbf{Boolean Constraints (Example)} \\ x_1, x_2, x_3, x_4 \in \mathbb{B} \\ x_3 \leftrightarrow (x_1 \oplus x_2) \land x_4 \leftrightarrow (x_1 \land x_2) \land x_4 \\ \textbf{equivalent conjunctive normal form:} \\ (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \\ \land (\overline{x}_4 \lor x_1) \land (\overline{x}_4 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_4) \land x_4 \\ \textbf{textual representation (DIMACS file format)} \\ \textbf{p cnf 4 8} \\ 1 - 2 \ 3 \ 0 \ -1 \ 2 \ 3 \ 0 \ 1 \ 2 \ -3 \ 0 \ -1 \ -2 \ -3 \ 0 \\ -4 \ 1 \ 0 \ -4 \ 2 \ 0 \ -1 \ -2 \ 4 \ 0 \ 4 \ 0 \\ \textbf{Solver (http://minisat.se/)} \\ \$ \ \text{minisat sat-exp.dimacs /dev/stdout} \\ \text{SAT } 1 \ 2 \ -3 \ 4 \ 0 \\ \hline \textbf{Mannes Waldman } \textbf{0} \ \textbf{Constraint Programming for Secondary Struc} \ \textbf{Cucher 5, 2012} \ \textbf{6/18} \\ \end{array}$
 Boolean Constraints (SAT) domain (for values and variables): B = {0, 1} deciding satisfiability of Boolean formulas is 	 Finite Domain (FD) Constraints SAT: unknowns are Booleans B = {0,1} FD: unknowns from some finite set, e.g.,

- NP-complete unless P = NP, there is no algorithm that is efficient in all cases
- ► DPLL (Davis-Putnam-Logemann-Loveland) with CDCL (conflict driven clause learning) is surprisingly efficient in *a lot* of cases.
- industrial-strength solvers (used in verification of hardware and software), SAT competitions, ...
- ► finite domain constraint problems can be solved by transformation to SAT.

 $Colour = \{empty, black, white\}$

empty = (1, 0, 0), black = (0, 1, 0), wh. = (0, 0, 1)

empty = (0, 0), black = (0, 1), white = (1, 0)

▶ for problems with infinite (or large) domain, try to

(represent numbers in some fixed bit width)

► can be used directly for graph (colouring)

problems, parsing problems, etc.

• unary encoding: Colour $\hookrightarrow \mathbb{B}^3$

• binary encoding: Colour $\hookrightarrow \mathbb{B}^3$

find some FD approximation

Johannes Waldmann () Constraint Programming for Secondary Struct October 5, 2012 8 / 18

SAT Coding Expl.: State Transitions [1,1,2,2,2,2,1,1,1,1] [1,1,2,2,0,0,1,2,2,1] [1,0,0,2,1,2,1,2,2,2,1] [1,2,1,2,1,2,1,2,0,0] $ \begin{array}{l} \cdot \text{ unknowns: } x_{t,p} \text{ where} \\ t = \text{time, } p = \text{position} \\ \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \end{array} \\ \begin{array}{l} \cdot \text{ obvious initial/final} \\ \text{ condition, transitions:} \end{array} \\ \begin{array}{l} \cdot \text{ where } t_{t+1,2} & \text{ where } t_{t+1,b+1} \\ \text{ where } t_{t+1,a} = 0 & \text{ where } t_{t+1,a+1} = 0 \\ \text{ where } t_{t,b} = 0 & \text{ where } t_{t+1,a+1} = 0 \\ \text{ where } t_{t,b} = 0 & \text{ where } t_{t+1,a+1} = 0 \\ \text{ where } t_{t,b} = 0 & \text{ where } t_{t+1,a} = 0 \\ \text{ where } t_{t+1,a} = 0 & \text{ where } t_{t+1,a} = 0 \\ \text{ where } t_{t+1,a} = 0 & \text{ where } t_{t+1,a} = 0 \\ \text{ where } t_{t+1,a} = 0 & \text{ where } t_{t+1,a} = 0 \\ \text{ where } t_{t+1,a} = 0 & \text{ where } t_{t+1,a} = 0 \\ where $	SAT encoding for Sec. Struc. Pred. model: disjoint circular matchings in graphs input: $G = (V, E)$ where $V =$ positions in RNA string, $E =$ set of all possible base pairs; number $k \in \mathbb{N}$ output: sequence M_1, \ldots, M_k with $M_i \subseteq E$ such that • $M := \bigcup_i M_i$ is a matching (each $v \in V$ is incident to at most one edge in M) • each M_i is circular (no crossing edges w.r.t. the ordering on V) each M_i is an edge set, thus a relation, thus a boolean matrix $M_i : V \times V \to \mathbb{B}$ the unknowns of the constraint system are the entries of these matrices.
Related Work	Encoding details
 Unyanee Poolsap, Yuki Kato, and Tatsuya Akutsu: Prediction of RNA secondary structure with pseudoknots using integer programming, BMC Bioinformatics. 2009; 10(Suppl 1): S38. Ganesh et al.: Lynx: A Programmatic SAT Solver for the RNA-Folding Problem, SAT'12 using the direct encoding (I⁴ clauses) for the non-crossing condition 	• union: $M = \bigcup_i M_i$ $M(p,q) := \bigvee_i M_i(p,q)$ • possible base pairs $M \subseteq E$: $\bigwedge \{\neg M(p,q) \mid (w[p], w[q]) \notin$ $\{AU, UA, CG, GC, GU, UG\}\}$ • M is matching: $\bigwedge \{\neg (M(p,q) \land M(q,r)) \mid p \neq r\}$ • M_i is circular (non-crossing): $\bigwedge \{\neg (M_i(p,q) \land M_i(r,s)) \mid p < r < q < s\}$ • number of variables: l^2k , formula size: $\Theta(l^4k)$.
Johannes Waldmann () Constraint Programming for Secondary Struct October 5, 2012 11 / 18	Johannes Waldmann () Constraint Programming for Secondary Struct October 5, 2012 12 / 18
Encoding for CYK parsing to reduce the l^4 formula size use table (relation) T with specification $T(p,q) \iff w[pq]$ is correctly parenthesized: • $T(p,p) \iff p \notin \text{domain } M \cup \text{range } M$ • $T(p,q) \iff (M(p,q) \land T(p+1,q-1)) \lor \bigvee_h T(p,h) \land T(h+1,q)$ • $M(p,q) \Rightarrow T(p,q), M(1,l)$ l^2 variables, l^3 formula size source code: http://dfa.im.htwk-leipzig.de/cgi-bin/gitweb.cgi?p=bloast.git;a=blob;f=asp/code/ SSP/Graph/Encode.hs;hb=HEAD Note: cannot apply CYK to the original problem, since we need to guess the type of parentheses. (this parsing problem is NP-hard)	Encoding Numeric Valuation For valuation of $(M_1,, M_k)$, consider <i>stacks</i> (groups of parallel edges in $M = \bigcup_i M_i$) • Define $S: V \to \mathbb{B}$ by $S(p) := \bigvee_q M(p,q) \land M(p+1,q-1)$, • count number of 1 in $(S(1),, S(l))$ by repeated binary addition (using half adder/full adder circuits represented as constraint systems) • compare with a given bound $v \ge B \iff \exists d : v = B + d$
Solving the Optimization Problem	Prototype Implementation
 write the constraint system C(P, S, V) = "S is an admissible solution for problem P with value ≥ V" to find max{V ∃S : C(P, S, V)}, determine a finite feasible range for V (e.g., 0 length of input) use iteration V = 0, 1, 2, or bisection V = I/2, 3I/4, 	<pre>of Secondary Structure Prediction with fixed number of parenthesis types is proof-of-concept, as a basis for experimentation: source: git: //dfa.imn.htwk-leipzig.de/srv/git/biosat using Haskell library Satchmo https://github.com/jwaldmann/satchmo to generate SAT constraint system and decode result solver: https://github.com/niklasso/minisat</pre>
Johannes Waldmann () Constraint Programming for Secondary Struct October 5, 2012 15 / 18	Johannes Waldmann () Constraint Programming for Secondary Struct October 5, 2012 16 / 18

<pre>Program Inversion Constraint system C(P, S, V) = "S is an admissible solution for problem P with value ≥ V" can be used for: given P, V, determine S e.g., RNA parsing (sec. struct. pred.) given S, V, determine P e.g., RNA design</pre>	 Conclusion/Claims constraint programming is <i>easy</i>: especially for non-programmers, since it is <i>declarative</i> constraint programming is <i>powerful</i>: use generic <i>domain-specific</i> solver for <i>application-specific</i> program/problem constraint programming is <i>flexible</i>: easily add/remove/change/invert constraints (much easier than change an application-specific algorithm) write the constraint program in an EDSL (<i>embedded domain specific language</i>) that takes care of encoding and decoding
Johannes Waldmann () Constraint Programming for Secondary Struct October 5, 2012 17/18	Johannes Waldmann () Constraint Programming for Secondary Struct October 5, 2012 18 / 18