Match-Bounds for Relative Termination

Dieter Hofbauer, BA Nordhessen Johannes Waldmann, HTWK Leipzig

Match-Heights and -Bounds

- annotate positions by numbers (go from Σ to $\Sigma \times \mathbb{N}$)
- start with all zeroes. in each step: heights in reduct := 1 + min of heights in redex

Def: *R* is match-bounded by *b* on $L \subseteq \Sigma^*$: each *R*-derivation starting in *L* has all heights $\leq b$.

- R m.b. on $L \Rightarrow R$ is terminating on L.
- $R \text{ m.b.} \Rightarrow R$ effectively preserves REG.

Note: min heights in redex < min heights in reduct

Fuzzy Matrix Interpretations

 $\mathbb{F} =$ the fuzzy semiring on $\mathbb{Z} \cup \{-\infty, +\infty\}$,

- addition = "min", zero = $+\infty$,
- multiplication = "max", one = $-\infty$.

orders:

- natural order > on \mathbb{F} ,
- $x >_1 y$ is $(x = +\infty = y) \lor (x > y)$,
- extend $>_1$ point-wise to matrices.

 \mathbb{F} -matrix interpretation $[\cdot]$ is compatible with R if $[l] >_1 [r]$ for all rules $(l \rightarrow r) \in R$.

Support of an Interpretation

Support of $[\cdot]$: all w with $[w] \neq 0$ (note: zero matrix has $+\infty$ everywhere) Thm: If R admits compatible $[\cdot]$,

- then R is match-bounded for $\mathrm{supp}[\cdot]$,
- and $\operatorname{supp}[\cdot]$ is closed w.r.t. \rightarrow_R .

Proof ideas:

F-interpretation corresponds to match-bound certificate automaton: for each redex path E, there is a reduct path U with min height $E < \min height U$ zero ($+\infty$) is highest in the order

Fuzzy Interpretation Ex.

 $\forall x \in \Sigma : [x]_{\text{top,left}} < +\infty, \text{ thus } \operatorname{supp}[\cdot] = \Sigma^*.$

is compatible with (SRS/Zantema/z003): $\{bca \rightarrow ababc, b \rightarrow cc, cd \rightarrow abca, aa \rightarrow acba\}$

Fuzzy Interpr. and Algebras

what is the underlying monotone algebra? vectors of multisets of heights, equivalently, of tropical numbers.

Relative Termination

R is terminating relative to *S* if SN(R/S) where $R/S = S^* \circ R \circ S^*$ (any $R \cup S$ -derivation has only finitely many *R*-steps) Ex.: $SN(\{aa \rightarrow aba\}/\{b \rightarrow bb\})$. Application: SN(R/S) and SN(S) imply $SN(R \cup S)$.

Relative Match-Bounds

Def: (R, S) is match-bounded by *b* for *L*, if in each annotated mixed derivation that starts in *L*, each *R*-rule has: min height redex < b.

Thm: If (R, S) is match-bounded, then SN(R/S).

Proof: consider multiset of heights < b

idea for certificates/interpretations: unify all heights $\geq b$. since order is reversed: use $-\infty$.

Fuzzy Int. for Relative Term.

use $>_2$ on \mathbb{F} (and point-wise on matrices) where $x >_2 y$ iff $(x = +\infty = y) \lor x >_1 y \lor (x = -\infty = y)$.

F-matrix interpretation [·] is weakly compatible with S if $[l] >_2 [r]$ for all rules $(l \rightarrow r) \in S$

If a fuzzy interpretation $[\cdot]$ is compatible with R and weakly compatible with S, then (R, S) is match-bounded on $supp[\cdot]$.

If both (R, S) and S are match-bounded, and rhs(R) and lhs(S) are overlap-free, then $R \cup S$ is match-bounded. (non-overlap condition is essential)mination, Edinburgh, July 2010 – p. 9

Comparison with Zankl and Kor

(RTA 2010): for redexes of relative rules that are non-size-increasing, and have all lhs labels equal, the rhs gets the exact same label.

notions are incomparable (even for string rewriting):

•
$$\{aa \rightarrow aba\}/\{b \rightarrow bb\}$$

•
$$\{a \rightarrow b\}/\{a \rightarrow a\}$$

Forward Closures

RFC(R) = right-hand sides of R-forward-closures.R terminating $\iff R$ terminating on RFC(R).

simulate narrowing by rewriting: $RFC(R)\#^* = (R \cup R_{\#})(rhs(R)\#^*)$, where $R_{\#} = \{(u\# \rightarrow r) \mid (uv \rightarrow r) \in R, u \neq \epsilon \neq v\}.$

find $[\cdot]$ that is comp. with R and weak comp. with $R_{\#}$ and $rhs(R)^* \subseteq supp[\cdot]$.

ansatz: $[\#]_{top,left} = -\infty, [\#]_{elsewhere} = +\infty$ check weak compat. with $R_{\#}$ by looking at leftmost columns of l, u.

Forward Closures Ex.

For $\{a^2b^2 \rightarrow b^3a^3\}$, RFC match-bound certificate:

RFC and Relative Termination

cannot prove relative termination (on Σ^*) by restricting to RFC:

• $R = \{ab \rightarrow a\}, S = \{c \rightarrow bc\}$

•
$$\operatorname{RFC}(R \cup S) = \{a\} \cup b^*c.$$

- SN(R/S) on $RFC(R \cup S)$, since $RFC(R \cup S)$ does not contain any R-redex.
- not SN(R/S) on Σ^* , since $abc \rightarrow_R ac \rightarrow_S abc$

RFC and Rule Removal

can still apply the RFC method to "remove rules" in a modular proof of full termination:

Thm: If SN(R/S) on $RFC(R \cup S)$ and SN(S) on Σ^* , then $SN(R \cup S)$ on Σ^* .

For $R = \{cb \rightarrow bbc\}$ and $S = \{ab \rightarrow baa\}$:

we have $\operatorname{RFC}(R \cup S) \subseteq \{a, b\}^* \cdot \{c, \epsilon\} = L$,

L contains no *R*-redex: (*R*, *S*) is RFC-matchbounded by 0, thus SN(R/S) on $RFC(R \cup S)$

get SN(S) from reversal and RFC.

Discussion

- similar thing works for tropical interpretations
- verification of
 - match-bounds / fuzzy interpr.
 easiest: by transformation to ...
 - tropical interpr. (Adam Koprowski, Color) probably need sparse matrix representation
- other semirings with zero at the top? (and superlinear growth?)