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Motivation: Rewriting
alphabet Σ, rule Σ∗ × Σ∗,
rewriting system (semi-Thue system) R: set of rules,
rewrite relation on Σ∗: rule application in context

→R= {(xly, xry) | x ∈ Σ∗, (l, r) ∈ R, y ∈ Σ∗}

is (Turing complete) model of computation.

• termination (no infinite →R-chain)

• resource bounds (derivational complexity dcR).

dhR(w) = sup{k | w →k
R w′},

dcR(n) = sup{dhR(w) | n ≥ |w|}.

Example: R = {ab → ba},
then abab →R baab →R baba →R bbaa
dhR(abab) = 3, dcR(n) = ⌊n/2⌋ · ⌈n/2⌉ ∈ Θ(n2) (bubblesort)
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Motivation: Monoids
Given rewriting system R over Σ,
find ordered monoid (M,>) and morphism (interpretation)
i : Σ∗ → M
such that x →R y implies i(x) > i(y).

deduce properties of →R from properties of (M,>).
(termination/well-foundedness, derivational
complexity/height)
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Motivation: Monoids
Given rewriting system R over Σ,
find ordered monoid (M,>) and morphism (interpretation)
i : Σ∗ → M
such that x →R y implies i(x) > i(y).

deduce properties of →R from properties of (M,>).
(termination/well-foundedness, derivational
complexity/height)

special case: M = the (matrix) monoid generated by a
weighted automaton.

• suitable weight semiring

• suitable automaton
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Strict partially ordered monoids
(cf. Fuchs: Partially Ordered Algebraic Systems, 1963)
If (M,>) is strict p.o. (a > b implies ac > bc and ca > cb),
then i(l) > i(r) for (l, r) ∈ R implies i(u) > i(v) for u →R v.
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Example: M = (N, 0,+, >)

R = {aba → ab3}, i : a 7→ 1, b 7→ 0
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If (M,>) is strict p.o. (a > b implies ac > bc and ca > cb),
then i(l) > i(r) for (l, r) ∈ R implies i(u) > i(v) for u →R v.

Example: M = (N, 0,+, >)

R = {aba → ab3}, i : a 7→ 1, b 7→ 0

in general, M will not be commutative,
since order of letters matters in rewriting, e.g. R = {ab → ba}
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Strict partially ordered monoids
(cf. Fuchs: Partially Ordered Algebraic Systems, 1963)
If (M,>) is strict p.o. (a > b implies ac > bc and ca > cb),
then i(l) > i(r) for (l, r) ∈ R implies i(u) > i(v) for u →R v.

Example: M = (N, 0,+, >)

R = {aba → ab3}, i : a 7→ 1, b 7→ 0

in general, M will not be commutative,
since order of letters matters in rewriting, e.g. R = {ab → ba}

a 7→

(

2 0

0 1

)

, b 7→

(

1 1

0 1

)

, ab =

(

2 2

0 1

)

>

(

2 1

0 1

)

= ba,

M =

(

≥ 1 ∗

∗ ≥ 1

)

, (>) =

(

≥ >

≥ ≥

)

, this is a strict p.o.
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Growth of Semigroups
(cf. Okninski: Semigroups of Matrices, Singapore, 1998)
Let M be generated by a finite set V .
Define V ≤m := {v1 · . . . · vk | k ≤ m, vi ∈ V }.

dV (m) := |V ≤m|

Gelfand-Kirillov dimension GK(M) := lim sup logm dV (m).
(dimension < ∞ ⇒ polynomial growth)
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(cf. Okninski: Semigroups of Matrices, Singapore, 1998)
Let M be generated by a finite set V .
Define V ≤m := {v1 · . . . · vk | k ≤ m, vi ∈ V }.

dV (m) := |V ≤m|

Gelfand-Kirillov dimension GK(M) := lim sup logm dV (m).
(dimension < ∞ ⇒ polynomial growth)

If R is not length-increasing,
and (M,>) is strict p.o. with i(→R) ⊆>,
then dcR(n) ≤ di(Σ)(n).
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Growth of Semigroups
(cf. Okninski: Semigroups of Matrices, Singapore, 1998)
Let M be generated by a finite set V .
Define V ≤m := {v1 · . . . · vk | k ≤ m, vi ∈ V }.

dV (m) := |V ≤m|

Gelfand-Kirillov dimension GK(M) := lim sup logm dV (m).
(dimension < ∞ ⇒ polynomial growth)

If R is not length-increasing,
and (M,>) is strict p.o. with i(→R) ⊆>,
then dcR(n) ≤ di(Σ)(n).

but most“interesting”R will have some length-increasing
rules, e.g. a2b2 → b3a3.

WATA, Leipzig, May 2010 – p.5/14



Heights

need to consider longest descending chain starting in V ≤m

hV (m) = sup{k | x0 ∈ V ≤m, x0 > . . . > xk, xi ∈ M}
examples:

• (N,+, >): linear

• (N, ·, >) : exponential
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Heights

need to consider longest descending chain starting in V ≤m

hV (m) = sup{k | x0 ∈ V ≤m, x0 > . . . > xk, xi ∈ M}
examples:

• (N,+, >): linear

• (N, ·, >) : exponential

. . . and staying in V ∗ =
⋃

m≥0 V m ⊆ M :

hV (m) = sup{k | x0 ∈ V ≤m, x0 > . . . > xk, xi ∈ V ∗}

• (N, ·, >) : polynomial (for finite V )

since log xi is non-negative integer linear combination of
{log v | v ∈ V }
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Controlled Heights
more detailed analysis:
in each rewrite step, length increase is bounded.

h′
V,B(m) = sup{k | x0 ∈ V m, x0 > . . . > xk, xi ∈ V m+iB}

(cf. “controlled”bad sequences in constructive proofs of
Higman’s theorem, see papers by Cichon and Weiermann)
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Weighted Automata
A = (Σ,W,Q, λ, µ, γ) with alphabet Σ, weight semiring W ,
set of states Q, initial weights λ : Q × 1 → W , transitions
µ : Σ → (Q2 → W ), final weights γ : 1 × Σ → W .
A(w) = λ · µ(w) · γ.
µ(Σ) generates a (matrix) monoid M .
To get strict p.o. on M , need

• multiplication on W : strict (e.g., plus, times)

• addition on W :
• strict (plus),
• half strict (min, max):

a > b ∧ c > d ⇒ (a + c) > (b + d)

(cf. Waldmann: WATA06, JALC07)
Note: M must be free of zero divisors.

WATA, Leipzig, May 2010 – p.8/14



General Value Bounds
. . . for weighted automata

• arctic (N ∪ {−∞},max,+) : linear

• tropical (N ∪ {+∞},min,+) : linear

• standard (N,+, ·): exponential
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General Value Bounds
. . . for weighted automata

• arctic (N ∪ {−∞},max,+) : linear

• tropical (N ∪ {+∞},min,+) : linear

• standard (N,+, ·): exponential

get polynomial bounds by restricting shapes
(e.g., upper triangular, with {0, 1} on main diagonal)

a =







1 1 0

0 1 0

0 0 1






, b =







1 0 0

0 1 1

0 0 1






, ab =







1 1 1

0 1 1

0 0 1






>







1 1 0

0 1 1

0 0 1






= ba,

this is an instance of a more general result
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Bounds, Growth and Ambiguity
(Schützenberger 1962, Jacob 1978) It is decidable whether a
Z-rational series is

• bounded

• polynomially growing
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Bounds, Growth and Ambiguity
(Schützenberger 1962, Jacob 1978) It is decidable whether a
Z-rational series is

• bounded

• polynomially growing

restrict to non-negative numbers: (N,+, ·)-automata:
measure the ambiguity of classical automata;
detect polynomially, exponentially growing ambiguity
(cf. Weber and Seidl, 1991, conditions EDA, IDAd)

q

w

w

p1

u1

u1 q1

u1

v1 p2

u2

u2 q2

u2

v2 . . . vd−1 pd

ud

ud qd

ud
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Bounds, Growth and Ambiguity
polynomial growth as constraint system:

• SCCs must have weights 1 and be unambigious,

• height of SCC decomposition gives degree bound)

combined with constraints for i(l) > i(r) (Waldmann, RTA10)

1 Sigma:1

3

X:6,R:4

4

X:1

5

a:2

2

R:1,a:1

R:6L:1

R:1,a:1

L:1

L:6,a:6

L:1
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Question
what ordered weight semiring W with

• strict multiplication (except at 0)

• and strict or half-strict addition

gives a quadratic (polynomial) general bound for height of
finitely generated matrix monoids (= weights computed by
W -automata)?

recall:

• half-strict: arctic (max,plus), tropical (min,plus): linear

• strict: standard (plus,times): exponential
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Half-Strict and Linear
Arctic semiring (max,plus)

a 7→

(

0 1

0 1

)

, b 7→

(

0 −∞

−∞ −∞

)

,

a2 =

(

1 2

1 2

)

, aba =

(

0 1

0 1

)

monoid M =

(

6= −∞ ∗

∗ ∗

)

, ordered by

(

>0 >0

>0 >0

)

,

where x >0 y := (x = −∞ = y) ∨ (x > y)
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Half-Strict and Quadratic
Gaubert suggested:

• G = −∞∪ {(x, y) | x ≥ y ≥ 0},

• (x1, y1) ⊗ (x2, y2) = (x1 + x2, y1 + y2),

• ⊕ = lexicographic max.
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• (x1, y1) ⊗ (x2, y2) = (x1 + x2, y1 + y2),

• ⊕ = lexicographic max.

Cannot find G-matrices A,B with AB > BA.
Some axiom missing?
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Half-Strict and Quadratic
Gaubert suggested:

• G = −∞∪ {(x, y) | x ≥ y ≥ 0},

• (x1, y1) ⊗ (x2, y2) = (x1 + x2, y1 + y2),

• ⊕ = lexicographic max.

Cannot find G-matrices A,B with AB > BA.
Some axiom missing?

Test case: prove“automatically” the quadratic derivational
complexity for {a2 → bc, b2 → ac, c2 → ab}

open since 2006, solved“manually”by Adian 2009.
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