Tropical Termination

Dieter Hofbauer, BA Nordhessen Wildungen Adam Koprowski, MLstate Paris and Radboud Univ. Nijmegen Johannes Waldmann, HTWK Leipzig

The Tropical Semiring

Definition:

- domain: $\mathbb{T} = \mathbb{N} \cup \{+\infty\}$,
- operations:
 - ⊕ (semiring addition): min
 - ⊗ (semiring multiplication): plus
- \mathbb{T} -weighted automaton over Σ \approx directed graph, labelled with $\Sigma \times \mathbb{T}$

Applications

- Imre Simon: used \mathbb{T} -weighted automata to analyze *finite* power property and star height of regular languages
- shortest path problems/algorithms (e.g., Dijkstra's) use \mathbb{T} -weighted automata (often implicitly)
- tropical (algebraic) geometry, tropical analysis

Tropical Order

- Definition: $x \ge y \iff x \oplus y = y$ has the usual nice properties since tropical addition is idempotent.
- Properties of the strict part >:
 - monotone w.r.t. multiplication (except at zero)
 - not monotone w.r.t. addition:

$$5 > 4$$
 but $(5 \oplus 3) \not > (4 \oplus 3)$

- a > b and c > d imply $(a \oplus c) > (b \oplus d)$
- will treat zero in a special way, define $x >_0 y \iff (x > y) \lor (x = +\infty = y)$
- will use point-wise product of \geq (and $>_0$, resp.) on \mathbb{T} -vectors.

Matrix Interpretations

• for a term rewriting system R over Σ , and semiring W (natural, arctic, tropical, ...) map function symbols to linear vector-valued function

$$[f](x_1,\ldots,x_k)=V_0\oplus M_1\otimes x_1\oplus\ldots\oplus M_k\otimes x_k$$

- obtain an extended weakly monotone algebra (Zantema)
 - orders >, \geq , compatible
 - [f] is monotone w.r.t. \geq
 - ([f]] not necessarily monotone w.r.t. >

If [l] > [r] for rules of R, and $[l] \ge [r]$ for rules of R', and > well-founded, then R is top-terminating relative to R'.

Tropical Matrix Interpretations

- domain: $\mathbb{N} \times \mathbb{T}^k$
- orders on domain:
 - ullet \geq : point-wise extension of \geq on ${\mathbb T}$
 - >: point-wise extension of $>_0$
- orders on interpretations (again, point-wise extensions)
 - $[f] > [f'] \iff V_0 > V'_0 \land M_1 > M'_1 \land \ldots \land M_k > M'_k$
 - then $f(x_1, ..., x_k) > g(x_1, ..., x_k)$
- notes: well-founded, stay inside the domain ([f] is "somewhere finite")
- formally verified in Coq (as part of Color) by Adam Koprowski
- easy analogy to arctic matrix interpretations.
- common "exotic" framework? (cf. Thiemann PR2010)

Exotic Full Termination

- (that is, not just top termination)
- can only work for unary signatures (string rewriting): assume $t_1 \to_R t_2$ and $[t_1] > [t_2]$. then $[f(t_1,s)] = V_0 \oplus M_1[t_1] \oplus M_2[s]$ but \oplus is not monotone w.r.t. >. absolute parts of interpretations must be zero.
- then, interpretation is mapping $\Sigma \to \mathbb{T}^{d \times d}$ matrices are orderd by point-wise $>_0$, as before. "somewhere finite" means top-left entry is finite.

Match-Bounds

- Theorem: from each match-bound certificate automaton for R, we can construct a tropical interpretation that is compatible with R.
- Proof idea: "matchbounded ⇒ terminating" uses multisets
 This can be replaced by weights (because of bounded branching), these weights are tropical numbers.
- example: match-heights: $a_3a_0 \rightarrow a_1b_1a_1$ assume match-bound is 3, and $\max \operatorname{length} \operatorname{rhs}(R) = 3, \min \operatorname{length} \operatorname{lhs}(R) = 2$: map heights to weights: $3 \mapsto 0, 2 \mapsto 1, 1 \mapsto 2, 0 \mapsto 4$
- Application: formal verification of match-bounded proofs can be done by transformation to tropical proofs
- but probably need sparse matrix representations

Local Termination

- Definition: R over Σ is (locally) terminating on $L \subseteq \Sigma^*$: there is no infinite R-derivation that starts in L.
- one way to prove local termination (de Vrijer, Endrullis, W.: RTA 09)
 - find a partial model = a (classical) automaton A over Σ (deterministic, but not necessarily complete) that contains L and is locally R-closed,
 - prove full termination of "R labelled by states of A"
- tropical interpretations can do both steps at the same time (roughly speaking)
 - ... same idea as for match-bound certificates

Tropical Local Termination

• for any tropical matrix interpretation $i: \Sigma \to \mathbb{T}^{d \times d}$, define its *support*

$$\operatorname{supp}(i) = \{ w \mid w \in \Sigma^*, i(w) \neq 0 \}$$

- observation: $\operatorname{supp}(i)$ is a regular language Proof: use homomorphism from $\mathbb T$ to $\mathbb B$
- observation: if i is compatible with R, then $\operatorname{supp}(i)$ is closed w.r.t. \to_R . Proof: trace paths in i, and use that zero $(=+\infty)$ is maximal.
- Theorem: if i is compatible with R, then R is locally terminating on $\operatorname{supp}(i)$.

RFC Termination

- Forward Closures of R: obtained from R by right extension (narrowing) and rewriting.
- RFC(R) = right hand sides of R-forward-closures.
- Theorem: R is terminating on Σ^* iff R is locally terminating on RFC(R).
- observation: use rewrite-implementation of extension

$$R_{\#} = \{ u \# \to r \mid (u \cdot v, l) \in R, u \neq \epsilon \neq v \}$$

to compute

$$RFC(R)\#^* = (R \cup R_\#)^*(rhs(R)\#^*)$$

Tropical RFC Termination

Theorem: if a tropical interpretation i

- is compatible with $R \cup R_{\#}$
- and $\operatorname{rhs}(R) \#^* \subseteq \operatorname{supp}(i)$,

then R is terminating.

simplified realization (ignoring the interpretation of #):

- assume the only #-transition in i is a loop at state q
- assume the weight of this transition is large (but finite)
- for each $(l,r) \in R$, there must be some r-path to q
- for each $(u \cdot v, r) \in R$ with $u \neq \epsilon \neq v$, if there is a u-path from p to q, then there must be an r-path from p to q

Tropical Constraints

find compatible interpretation as solution of a constraint system (for the matrix entries).

- general observation: the system is a boolean combination of linear inequalities: satisfiability is decidable (for fixed dimension).
- booleans can be simulated by integers (mixed linear programming)
 but we have a lot of booleans (one or each ⊕)
- or we restrict the range and make a finite domain problem that can be solved by bit-blasting. different choices for representation:
 - binary
 - unary (note: addition via sorting networks)
 - ad-hoc CNFs for small fixed bit widths

Status, Outlook

- basic idea (full tropical termination) published in
 WATA06, JALC 2007 (historic note: JALC ← EIK)
- tropical termination (full, top, RFC): implemented in Matchbox (2010)
- performance:
 in some cases, finds smaller certificates than other methods,
 still missing: "killer examples"
- verification (tropical top termination): implemented in Coq/Color by Adam Koprowski
- "relative RFC termination" in WST 2010 (with Dieter Hofbauer)
 (for match-bounds, but same thing works for tropical)