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Derivational Complexity. . .
• (derivation) relation → on domain D,

• size measure | · | : D → N,

derivation height of s w.r.t. →:

dh→(s) := sup{k | ∃t : s →k t}

derivational complexity of →:

dc→ := n 7→ sup{dh→(s) | n ≥ |s|}
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. . . of (String) Rewriting
• {0 → 1} is linear

0k →k 1k

• {01 → 10} is quadratic
01k →k 1k0, 0i1k →i·k 1k0i

• {01 → 110} is exponential
01k →k 12k0, 0i1 →∗ 12i

0i

• etc.

RTA 2010, Edinburgh – p. 3



Matrix Interpretations
mapping [·] : Σ → Nd×d, extended to Σ∗ → Nd×d,

• compatibility: ∀(l → r) ∈ R :
[l] − [r] ∈ Nd×d, ([l] − [r])top,right > 0

• monotonicity w.r.t. left and right multiplication
(contexts and substitutions)
∀c ∈ Σ : [c]top,left ≥ 1, [c]bottom,right ≥ 1

Example, w.r.t. R = {ab → ba}

[a]=





2 0

0 1



,[b]=





1 1

0 1



; [ab]=





2 2

0 1



,[ba]=





2 1

0 1
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Interpretations & Complexity
existence of compatible monotone maxtrix
interpretation

• proves termination,

• bounds derivational complexity.
• in general, by an exponential function,
• for certain matrices, by a polynomial.
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String → Term Rewriting
• same question: bound derivational complexity,

• use path-separated weighted tree automata,
where interpretation of k-ary function symbol is
(~x1, . . . , ~xk) 7→ M1 ~x1 + . . . + Mk ~xk + ~a

• interpretation of term (tree) t
is sum of interpretations of paths (strings)

• compute bound for corresponding word matrix
interpretation (use all the Mi, ignore ~a)

• add one to the resulting degree
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Upper triangular form
interpretation is upper triangular if
∀c, i, j : ((i > j) ⇒ [c]i,j = 0)∧ ((i = j) ⇒ [c]i,j ≤ 1)

a b ab ba








1 1 0

0 1 0

0 0 1

















1 0 0

0 1 1

0 0 1

















1 1 1

0 1 1

0 0 1

















1 1 0

0 1 1

0 0 1









Upper triangular interpretation gives polynomial
bound on derivational complexity.
degree ≤ dimension - 1.
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Other Matrix Forms
there are matrix interpretations with polynomial
growth but not of upper triangular form. Example:

a 7→

(

1 2 1 0
0 0 0 0
0 0 0 2
0 0 0 1

)

b 7→

(

1 1 0 1
0 0 0 0
0 1 0 0
0 0 0 1

)

c 7→

(

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

)

as weighted automaton:

1

a,b,c:1

a:2,b:1

b:1
a:1

2

c:1

4

a,b,c:1

3

b:1

a:2

and these are needed, see example in paper.
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Non-Triangularity is Needed
rewriting system:
Ra2 → a2R, RX → LX, a2L → La2, XL → XRa

typical derivation:
XRa2kX →∗ Xa2kRX → Xa2kLX →∗

XLa2kX → XRa2k+1X →∗ Xa2kRaX

termination depends on counting mod 2

system does not admit a compatible upper
triangular interpretation (counting would need a
loop).
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Deciding Polynomial Growth
Algorithm:

1. compute strongly connected components
A1, . . . , Ak of underlying graph.

2. if there is any arrow with weight > 1 inside one
component, then growth is exponential.

3. consider each Ai as classical automaton.
if any Ai contains a diamond (= distinct paths
with identical start, label, end), then A grows
exponentially. — Otherwise, polynomially.

Notes: degree is < maximal number of SCCs on a
chain of SCCs, this bound is not sharp.
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Diamonds

Diamond = pair of distinct paths
with identical start, label, end.

p

w

w

q

no diamond = strong form of non-ambiguity

Thm: A contains no diamond iff

• the reduced form (all states reachable and
productive)

• of A × A (cartesian product construction)

• consists of the main diagonal only.

(cf. Sakarovitch: Theorie des Automates)
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Related (and much Earlier)
• Ambiguity of finite automata

Ibarra and Ravikumar, Weber and Seidl

• DT0L growth
Rosenberg, Salomaa

• N, Z, Q-rational series
Berstel, Reutenauer

so . . . what’s new?
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Implementation
in the context of termination provers:
given a rewrite system R, numbers d, g:
construct a constraint system for an unknown
matrix interpretation [·] of dimension d:

• [·] is monotonic and compatible with R
(non-linear arithmetic constraint)

• [·] is polynomially bounded with degree ≤ g.
(finite domain constraint)

Then feed the complete system to a constraint
solver. (Matchbox uses bit-blasting to Minisat.)
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Constraints for SCCs
Q = indices of matrices = states of automaton

• relation C ⊆ Q2 “reachable”:

• p
c:w
−→A q ∧ w > 0 ⇒ C(p, q),

• C is transitive: C ◦ C ⊆ C

• relation S ⊆ Q2 “strongly connected”:
• S = C ∩ C−,
• p

c:w
−→A q ∧ w > 1 ⇒ ¬S(p, q),

• T (p, q) := S(p, p) ∧ (C \ C−)(p, q) ∧ S(q, q),
height of T ≤ b (use unary encoding)
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Constraints for Diamonds
• define M ⊆ Q4: move relation of A × A:

M = {((p1, p2), (q1, q2)) | S(p1, q1), S(p2, q2),
∃c ∈ Σ : p1 →c q1 ∧ p2 →c q2)}

• set R ⊆ Q2:
states in A × A reachable from diagonal

diag ⊆ R ∧ M(R) ⊆ R

• set P ⊆ Q2:
states in A × A reaching the diagonal

diag ⊆ P ∧ M−(P ) ⊆ P
• reduced automaton consists of diagonal only:

R ∩ P ⊆ diag
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Over-Approximation
• The given construction over-approximates

strong connectivity.
(Necessarily so. No easy way to encode “the
smallest transitive C such that . . . ”)

• This is actually good: it might unify adjacent
SCCs (if their union is still diamond-free),

• and thus reduce the height of the chains (the
degree of the bound).

see example in the paper.
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Degree Reduction by Approx.
SCCs:
{1}, {2, 4}, {3, 5}

merge {1}
with {2, 4}

result {1, 2, 4} is
still diamond-free
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Summary, Discussion
summary:

• define non-triangular polynomially bounded
interpretations

• decide polynomial growth of N-matrix
interpretations, encode as constraint system

open, ongoing, related:

• (non-)completeness
• polynomially bounded interpretation for
{a2 → bc, b2 → ac, c2 → ab}

• polynomially bounded Q-matrix interpretations
(Friedrich Neurauter) RTA 2010, Edinburgh – p. 18
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