Constructing Lower Bounds on
the Derivational Complexity of
Rewrite Systems

Dieter Hofbauer, BA Nordhessen, Germany
Johannes Waldmann, HTWK Leipzig, Germany

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.1/31

Derivational Complexity: Definition

The derivation height of term t modulo system R is
the maximal length of an R-derivation starting in t:

dhpr(t) = max{n | ds:t =% s}

The derivational complexity of R maps natural number n
to the maximal derivation height of terms of size at most n:

dcgr(n) = max{dhg(t) | size(t) < n}

This is a worst case complexity measure.

How about the following systems?
e {aab — ba}, {ab — ba}, {ab — baa}, {aa — aba}

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.2/31

Example: Bubble Sort

ab — ba

e Upper bound O(n?) from the (matrix) interpretation

al(z,y) = (z +y,y)
bl(z,y) = (z,y +1)

abl(z,y) =(r+y+1,y+1)
> (z+y,y+1) = [ba](z,y)

For each string w, [w](0,0) < (Jw|?, |w|).

 Lower bound €(n?) from the family of derivations

2
anbn_>7}€ b

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.3/31

Derivational Complexity: Exercises

Find lower bounds for the derivational complexity of

* Ry = {ba — acb, bc — abb}
* Ry = {ba — acb, bc — cbb}

* Rs = {ba — aab, bc — cbb}

Hint: one system is doubly exponential, one is multiply
exponential, one is non-terminating.

A lower bound is proven by presenting a family of derivations
that achieves the desired length.

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.4/31

Research Program

* Deduce upper bounds on the derivational complexity
from termination proofs.

* Characterize complexity classes via termination proof
methods: Implicit Computational Complexity.

* | This talk:
Deduce lower bounds on the derivational complexity
from derivation patterns.

Applications:
* “debugging” of rewrite systems

* evaluating the strength of the automated methods
for finding upper bounds (complexity category of the

termination competition)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.5/31

www.termination—-portal.org

e Workshop on termination (1st WST'93 — 11th WST'10)
e Termination competition ('04 — '10)

* Problems
termination problem data base (tpdb) at
termcomp.uibk.ac.at/status/downloads/

* Tools (provers, verifiers)

e Complexity category, since '08
* CaT [Korp, Sternagel, Zankl]
e TCT [Avanzini, Moser, Schnabl]
* Matchbox [W]

Focus up to now: (polynomial) upper bounds

This talk: lower bounds

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.6/31

www.termination-portal.org
termcomp.uibk.ac.at/status/downloads/

Upper / Lower Bounds: Examples
1. R={aa — aba}, dcg € ©(n)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.7/31

Upper / Lower Bounds: Examples
1. R={aa — aba}, dcg € O(n)
2. R={ab— ba}, dcg € O(n?)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.7/31

Upper / Lower Bounds: Examples
1. R={aa — aba}, dcg € O(n)
2. R={ab— ba}, dcp € O(n?)
3. R={ab— baa}, dcp € ©(2")

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.7/31

Upper / Lower Bounds: Examples
1. R={aa — aba}, dcg € O(n)
2. R={ab— ba}, dcp € O(n?)
3. R={ab— baa}, dcp € ©(2")
A

. R ={aabab — aPb,aP — PAa,aA — Aa,
bP — bQ, QA — aQ,Qa — babaa}
dcp not primitive recursive (Ackermann)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.7/31

Upper / Lower Bounds: Examples
1. R={aa — aba}, dcg € O(n)
2. R={ab — ba}, dcp € O(n?)
3. R={ab— baa}, dcp € ©(2")

4. R = {aabab — aPb,aP — PAa,aA — Aa,
bP — bQ, QA — a@),Qa — babaa}
dcp not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.7/31

Upper / Lower Bounds: Examples
1. R={aa — aba}, dcg € O(n)
2. R={ab — ba}, dcp € O(n?)
3. R={ab— baa}, dcp € ©(2")

4. R = {aabab — aPb,aP — PAa,aA — Aa,
bP — bQ, QA — a@),Qa — babaa}
dcp not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

We can deduce some of the upper bounds automatically:
1. via match bounds
2. via upper triangular 3 X 3 matrix interpretations

3. via matrix interpretations

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.7/31

Upper Bounds

polynomial interpretations ~~ doubly exponential
[Lautemann / Geupel / H / Zantema / ...]

multiset path orders ~~ primitive recursive [H]

lexicographic path orders ~~ multiple recursive
[Weiermann]

Knuth-Bendix orders ~» multiple recursive (2-rec)
[H, Lautemann / Touzet / Lepper / Bonfante / Moser|

Related [Buchholz / Touzet / Weiermann / Moser ...]
match bounds ~ linear [Geser, H, W]

matrix interpretations ~» exponential [H, W]

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.8/31

Smaller Upper Bounds

Challenge: Small complexity classes.
Here, previous upper bound results heavily overestimate dcp.

Some remedies:

* Syntactic restrictions of standard path orders
* light multiset path order LMPO [Marion]

e polynomial path order POP™: innermost derivations
on constructor-based terms [Avanzini, Moser], cf.
[Bellantoni, Cook]

e Matrix interpretations of particular shape [W]

* Context-dependent interpretations
[H / Schnabl, Moser]

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.9/31

Lower Bound for Bubble Sort

ab — ba
Rule: ab —1 ba
Compose: a’b —? ba?
Generalize: aab —" 1 paa™

Verify (induction step): aa""'b ~ aaa™b

Ll abaa™

—! baaa™

~ baa" !

Result: Linear lower bound

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.10/31

Bubble Sort (cont’d)

ab — ba
Pattern: aab —" 1 baa”
Compose: aa"bb —2"1) phaq™

Generalize: aabb™m —(m+1)(n+1) pym o n

Verify (induction step): aa”bb™ ™ ~ aabb"™b
H(?7?,—|—1)(n—|—1) bb" aa™b
—" L b baa™

~ bt aq

Result: Quadratic lower bound

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.11/31

Similar Example: Associativity

ff(z,y),2) = [z, f(y,2))

* For R =[f(x,-)] and L = [f(-, 2)],

L(R(y)) = f(f(z,y),2) = f(z, f(y,2)) = R(L(y))

* Again,
L*"(R™(y)) =" R"(L"(y))

this still looks like string rewriting (on ¥ = {L, R})

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.12/31

Example: Real Terms

f(s(x),y) — f(z,s(y))

Rule: f(s(x),v) —! f(z,s(y)
Compose: f(s*(x),y) =% f(z,5°(y))
Generalize: f(s(s"(z)),y) — [z, s(s"(y)))

o S

Verify (induction step): f(s(s" " (z)),y) ~ f(s(s(s"(x))),v)
—! f(s(s"(x)), s(y))
=" f (@, s(s"(s(y))))

Result: Linear lower bound

Example: Real Terms (cont’d)

f(s(x),y) — f(z,s(y)), s(f(z,y)) — f(y,z)

Rule: s(f(z,y) =" f(y,x)

Compose: s(f(s"H(x),y)) =" F(s"TH (),)
Compose: s(s(f(s" ! (x),y))) =202 f(s"T(z),y)
Generalize: s(s™(f(s"™(z)),x) —MTDOF2) gntliy) o)

Verify: similar to the previous example

Result: Quadratic lower bound

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.14/31

Derivation Patterns

derivation pattern consists of:
* |hs, rhs: term pattern
* length: numerical pattern (polynomial, ...)
term pattern constructed from:
* term variable
* function symbol with term patterns as arguments

* jterated context application, consisting of:
* linear context: term with one hole
* iteration count: (simple?) numerical pattern
® argument: term pattern
pattern compatible with rewrite system R:

for any assignment of term and numerical variables, the
instantiated pattern is an R-derivation of the given length.

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.15/31

Constructing Derivation Patterns

* rules are patterns
* compose patterns via overlap closures
* generalize via embedding

* verify by enumerating reachable terms
(apply verified patterns and induction hypothesis

modulo context equalities)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.16/31

Context Equalities

expand top: CFH(t) ~ C(CR (1))
expand bottom: C*TL(¢) ~ C*(C(1))
remove: COt) ~ t

rotate: (CD)FC(t) ~ C(DC)¥(t)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.17/31

Derivation Height of the Patterns

* avoid (symbolic) numerical calculations
* storing just the degree of the polynomial

* if induction hypthesis is used once in the verification of
the induction step,
then the degree of the inductive pattern is 1+ max
degree of other patterns used.

* needs extension if several numerical variables occur

* need to check that |Ihs of patterns have linear size
this is enforced by syntactic restrictions (context is “term
with hole”, not “term pattern with hole")

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.18/31

Polynomials of higher Degree

our patterns can describe (some) polynomial length
derivations of any given degree.

By={ki— jk|k>i,j} over 0y ={1,2,....d}
By = {21 — 12}, B3 = {21 — 12,31 — 23,32 — 13,...}

e |ower bound:)
for d > 2, we have d"...2n1n 007 ngn gn

* upper bound:
upper triangular matrix interpretation of dimension d

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.19/31

Some non-polynomial patterns

when searching for polynomial patterns,
may find something else along the way

* exponential patterns
* iterate a linear function of slope > 1

* use Induction hypothesis more than once

* non-terminating patterns (looping, non-looping)
* |hs of pattern is constant, but rhs is not

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.20/31

Example: Exponential Lower Bound

ab — baa

Rule: ab —1 baa

Compose: a’b —2 ba*

Generalize: aa™b —"1! pg2(n+1)

using the above, prove the (2(2") lower bound pattern:

Rule: ab —' baa
Compose: ab® —? a2

. n+1l n+1
Generalize: abb”™ —2 —1 ppng?

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.21/31

Exponential, for a Different Reason

{0 - 1,1 - C,0C — 10,1C — C0}

e Pattern 00 —=2" COF,

* Base: k+— 0 gives 00" =0 —* C = C0Y

e Step: k— k+ 1 gives 001 27 ook
expand: 000%, apply hypothesis: 0C0*, apply rule: 100¥,
apply hypothesis: 1C0*, apply rule: C00”, collect:
Ook+1_

exponential because induction hypthesis is applied twice in
the induction step

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.22/31

Non-Termination

Infinite lower bound ...
Simple forms of non-termination
* Cycles: t —3 ¢
* Loops: t =% C(to)
* Self-Embedding Patterns,
e.g., ab®dc —T ab*"tdc (Geser/Zantema, Oppelt)

our method should be able to find patterns for such

derivations:
the lhs is constant (does not depend on numerical variables)

while the length and/or rhs are not constant

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.23/31

Beyond Loops

Oppelt's tool nonloop
* overlap closures
* derivation patterns
* self-embedding patterns
* inference rules on patterns

* Expl.s from the database:
oppelt08/* and Zantema/z073

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.24/31

Oppelt’s nonloop (cont’d)

bc — dc, bd — db, ad — abb

bd —+ db
b*d —+ db”
b:c—l—ld _>—|— db:c—l—l
b d =T dbb
b* de =1 db"be
b* T de —T db”dc
ab”tde —T adb dc
ab” tde =T abbb”dc

ab®lde =1 ab®de

results in a self-embedding derivation pattern

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.25/31

Conclusion

Rather restricted form of patterns:
only one-place contexts, restricted nesting

No proper higher-order unification
But suffices for many examples

Implementation is work in progress
(main task is to control the search:

keep (promising) patterns in priority queue)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 — p.26/31

	Derivational Complexity: Definition
	Example: Bubble Sort
	Derivational Complexity: Exercises
	Research Program
	url {www.termination-portal.org}
	Upper / Lower Bounds: Examples
	Upper Bounds
	Smaller Upper Bounds
	Lower Bound for Bubble Sort
	Bubble Sort (cont'd)
	Similar Example: Associativity
	Example: Real Terms
	Example: Real Terms (cont'd)
	Derivation Patterns
	Constructing Derivation Patterns
	Context Equalities
	Derivation Height of the Patterns
	Polynomials of higher Degree
	Some non-polynomial patterns
	Example: Exponential Lower Bound
	Exponential, for a Different Reason
	Non-Termination
	Beyond Loops
	Oppelt's nonloop (cont'd)
	Conclusion

