
Constructing Lower Bounds on
the Derivational Complexity of

Rewrite Systems

Dieter Hofbauer, BA Nordhessen, Germany

Johannes Waldmann, HTWK Leipzig, Germany

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.1/31

Derivational Complexity: Definition
The derivation height of term t modulo system R is
the maximal length of an R-derivation starting in t:

dhR(t) = max{n | ∃s : t →n

R s}

The derivational complexity of R maps natural number n

to the maximal derivation height of terms of size at most n:

dcR(n) = max{dhR(t) | size(t) ≤ n}

This is a worst case complexity measure.

How about the following systems?

• {aab → ba}, {ab → ba}, {ab → baa}, {aa → aba}

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.2/31

Example: Bubble Sort

ab → ba

• Upper bound O(n2) from the (matrix) interpretation

[a](x, y) = (x + y, y)

[b](x, y) = (x, y + 1)

[ab](x, y) = (x + y + 1, y + 1)

> (x + y, y + 1) = [ba](x, y)

For each string w, [w](0, 0) ≤ (|w|2, |w|).

• Lower bound Ω(n2) from the family of derivations

anbn→n
2

R bnan

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.3/31

Derivational Complexity: Exercises

Find lower bounds for the derivational complexity of

• R1 = {ba → acb, bc → abb}

• R2 = {ba → acb, bc → cbb}

• R3 = {ba → aab, bc → cbb}

Hint: one system is doubly exponential, one is multiply
exponential, one is non-terminating.

A lower bound is proven by presenting a family of derivations
that achieves the desired length.

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.4/31

Research Program
• Deduce upper bounds on the derivational complexity

from termination proofs.

• Characterize complexity classes via termination proof
methods: Implicit Computational Complexity.

• This talk:
Deduce lower bounds on the derivational complexity
from derivation patterns.

Applications:
• “debugging”of rewrite systems
• evaluating the strength of the automated methods

for finding upper bounds (complexity category of the
termination competition)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.5/31

www.termination-portal.org
• Workshop on termination (1st WST’93 – 11th WST’10)

• Termination competition (’04 – ’10)

• Problems
termination problem data base (tpdb) at
termcomp.uibk.ac.at/status/downloads/

• Tools (provers, verifiers)

• Complexity category, since ’08
• CaT [Korp, Sternagel, Zankl]

• TCT [Avanzini, Moser, Schnabl]

• Matchbox [W]

Focus up to now: (polynomial) upper bounds

This talk: lower bounds

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.6/31

www.termination-portal.org
termcomp.uibk.ac.at/status/downloads/

Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.7/31

Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.7/31

Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.7/31

Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,

bP → bQ,QA → aQ,Qa → babaa}
dcR not primitive recursive (Ackermann)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.7/31

Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,

bP → bQ,QA → aQ,Qa → babaa}
dcR not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.7/31

Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,

bP → bQ,QA → aQ,Qa → babaa}
dcR not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

We can deduce some of the upper bounds automatically:

1. via match bounds

2. via upper triangular 3 × 3 matrix interpretations

3. via matrix interpretations

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.7/31

Upper Bounds

• polynomial interpretations doubly exponential
[Lautemann / Geupel / H / Zantema / . . .]

• multiset path orders primitive recursive [H]

• lexicographic path orders multiple recursive
[Weiermann]

• Knuth-Bendix orders multiple recursive (2-rec)
[H, Lautemann / Touzet / Lepper / Bonfante / Moser]

• Related [Buchholz / Touzet / Weiermann / Moser . . .]

• match bounds linear [Geser, H, W]

• matrix interpretations exponential [H, W]

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.8/31

Smaller Upper Bounds
Challenge: Small complexity classes.
Here, previous upper bound results heavily overestimate dcR.

Some remedies:

• Syntactic restrictions of standard path orders
• light multiset path order LMPO [Marion]

• polynomial path order POP∗: innermost derivations
on constructor-based terms [Avanzini, Moser], cf.
[Bellantoni, Cook]

• Matrix interpretations of particular shape [W]

• Context-dependent interpretations
[H / Schnabl, Moser]

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.9/31

Lower Bound for Bubble Sort

ab → ba

Rule: ab →1 ba

Compose: a2b →2 ba2

Generalize: aanb →n+1 baan

Verify (induction step): aan+1b ∼ aaanb

→n+1 abaan

→1 baaan

∼ baan+1

Result: Linear lower bound
Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.10/31

Bubble Sort (cont’d)

ab → ba

Pattern: aanb →n+1 baan

Compose: aanbb →2(n+1) bbaan

Generalize: aanbbm →(m+1)(n+1) bbmaan

Verify (induction step): aanbbm+1 ∼ aanbbmb

→(m+1)(n+1) bbmaanb

→n+1 bbmbaan

∼ bbm+1aan

Result: Quadratic lower bound
Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.11/31

Similar Example: Associativity

f(f(x, y), z) → f(x, f(y, z))

• For R = [f(x, ·)] and L = [f(·, z)],

L(R(y)) = f(f(x, y), z) → f(x, f(y, z)) = R(L(y))

• Again,
Ln(Rm(y)) →n·m

R Rn(Lm(y))

this still looks like string rewriting (on Σ = {L,R})

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.12/31

Example: Real Terms

f(s(x), y) → f(x, s(y))

Rule: f(s(x), y) →1 f(x, s(y))

Compose: f(s2(x), y) →2 f(x, s2(y))

Generalize: f(s(sn(x)), y) →n+1 f(x, s(sn(y)))

Verify (induction step): f(s(sn+1(x)), y) ∼ f(s(s(sn(x))), y)

→1 f(s(sn(x)), s(y))

→n+1 f(x, s(sn(s(y))))

∼ f(x, s(sn+1(y)))

Result: Linear lower bound
Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.13/31

Example: Real Terms (cont’d)

f(s(x), y) → f(x, s(y)), s(f(x, y)) → f(y, x)

Rule: s(f(x, y)) →1 f(y, x)

Compose: s(f(sn+1(x), y)) →n+2 f(sn+1(y), x)

Compose: s(s(f(sn+1(x), y))) →2(n+2) f(sn+1(x), y)

Generalize: s(sm(f(sn+1(x)), x) →(m+1)(n+2) f(sn+1(x), x)

Verify: similar to the previous example

Result: Quadratic lower bound

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.14/31

Derivation Patterns
derivation pattern consists of:

• lhs, rhs: term pattern

• length: numerical pattern (polynomial, . . .)

term pattern constructed from:

• term variable

• function symbol with term patterns as arguments

• iterated context application, consisting of:
• linear context: term with one hole
• iteration count: (simple?) numerical pattern
• argument: term pattern

pattern compatible with rewrite system R:
for any assignment of term and numerical variables, the
instantiated pattern is an R-derivation of the given length.

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.15/31

Constructing Derivation Patterns

• rules are patterns

• compose patterns via overlap closures

• generalize via embedding

• verify by enumerating reachable terms
(apply verified patterns and induction hypothesis
modulo context equalities)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.16/31

Context Equalities

expand top: Ck+1(t) ∼ C(Ck(t))

expand bottom: Ck+1(t) ∼ Ck(C(t))

remove: C0(t) ∼ t

rotate: (CD)kC(t) ∼ C(DC)k(t)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.17/31

Derivation Height of the Patterns
• avoid (symbolic) numerical calculations

• storing just the degree of the polynomial

• if induction hypthesis is used once in the verification of
the induction step,
then the degree of the inductive pattern is 1+ max
degree of other patterns used.

• needs extension if several numerical variables occur

• need to check that lhs of patterns have linear size
this is enforced by syntactic restrictions (context is“term
with hole”, not“term pattern with hole”)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.18/31

Polynomials of higher Degree
our patterns can describe (some) polynomial length
derivations of any given degree.

Bd = {ki → jk | k > i, j} over Σd = {1, 2, . . . , d}

B2 = {21 → 12}, B3 = {21 → 12, 31 → 23, 32 → 13, . . .}

• lower bound:
for d ≥ 2, we have dn . . . 2n1n →Θ(nd) 1n2n . . . dn

• upper bound:
upper triangular matrix interpretation of dimension d

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.19/31

Some non-polynomial patterns
when searching for polynomial patterns,
may find something else along the way

• exponential patterns
• iterate a linear function of slope > 1

• use induction hypothesis more than once

• non-terminating patterns (looping, non-looping)
• lhs of pattern is constant, but rhs is not

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.20/31

Example: Exponential Lower Bound

ab → baa

Rule: ab →1 baa

Compose: a2b →2 ba4

Generalize: aanb →n+1 ba2(n+1)

using the above, prove the Ω(2n) lower bound pattern:

Rule: ab →1 baa

Compose: ab2 →3 b2a22

Generalize: abbn →2n+1
−1 bbna2n+1

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.21/31

Exponential, for a Different Reason

{0 → 1, 1 → C, 0C → 10, 1C → C0}

• Pattern 00k →≥2k

C0k.

• Base: k 7→ 0 gives 000 = 0 →2 C = C00

• Step: k 7→ k + 1 gives 00k+1 →2k+1

C0k+1.
expand: 000k, apply hypothesis: 0C0k, apply rule: 100k,
apply hypothesis: 1C0k, apply rule: C00k, collect:
C0k+1.

exponential because induction hypthesis is applied twice in
the induction step

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.22/31

Non-Termination

Infinite lower bound . . .
Simple forms of non-termination

• Cycles: t →+
R

t

• Loops: t →+
R

C(tσ)

• Self-Embedding Patterns,
e.g., abxdc →+ abx+1dc (Geser/Zantema, Oppelt)

our method should be able to find patterns for such
derivations:
the lhs is constant (does not depend on numerical variables)
while the length and/or rhs are not constant

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.23/31

Beyond Loops

Oppelt’s tool nonloop

• overlap closures

• derivation patterns

• self-embedding patterns

• inference rules on patterns

• Expl.s from the database:
oppelt08/* and Zantema/z073

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.24/31

Oppelt’s nonloop (cont’d)

bc → dc, bd → db, ad → abb

bd →+
db

b
x

d →+
db

x

b
x+1

d →+
db

x+1

b
x+1

d →+
db

x

b

b
x+1

dc →+
db

x

bc

b
x+1

dc →+
db

x

dc

ab
x+1

dc →+
adb

x

dc

ab
x+1

dc →+
abbb

x

dc

ab
x+1

dc →+
ab

x+2
dc

results in a self-embedding derivation pattern
Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.25/31

Conclusion

• Rather restricted form of patterns:
only one-place contexts, restricted nesting

• No proper higher-order unification

• But suffices for many examples

• Implementation is work in progress
(main task is to control the search:
keep (promising) patterns in priority queue)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.26/31

	Derivational Complexity: Definition
	Example: Bubble Sort
	Derivational Complexity: Exercises
	Research Program
	url {www.termination-portal.org}
	Upper / Lower Bounds: Examples
	Upper Bounds
	Smaller Upper Bounds
	Lower Bound for Bubble Sort
	Bubble Sort (cont'd)
	Similar Example: Associativity
	Example: Real Terms
	Example: Real Terms (cont'd)
	Derivation Patterns
	Constructing Derivation Patterns
	Context Equalities
	Derivation Height of the Patterns
	Polynomials of higher Degree
	Some non-polynomial patterns
	Example: Exponential Lower Bound
	Exponential, for a Different Reason
	Non-Termination
	Beyond Loops
	Oppelt's nonloop (cont'd)
	Conclusion

