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Derivational Complexity: Definition
The derivation height of term t modulo system R is
the maximal length of an R-derivation starting in t:

dhR(t) = max{n | ∃s : t →n

R s}

The derivational complexity of R maps natural number n

to the maximal derivation height of terms of size at most n:

dcR(n) = max{dhR(t) | size(t) ≤ n}

This is a worst case complexity measure.

How about the following systems?

• {aab → ba}, {ab → ba}, {ab → baa}, {aa → aba}

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.2/31



Example: Bubble Sort

ab → ba

• Upper bound O(n2) from the (matrix) interpretation

[a](x, y) = (x + y, y)

[b](x, y) = (x, y + 1)

[ab](x, y) = (x + y + 1, y + 1)

> (x + y, y + 1) = [ba](x, y)

For each string w, [w](0, 0) ≤ (|w|2, |w|).

• Lower bound Ω(n2) from the family of derivations

anbn→n
2

R bnan
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Derivational Complexity: Exercises

Find lower bounds for the derivational complexity of

• R1 = {ba → acb, bc → abb}

• R2 = {ba → acb, bc → cbb}

• R3 = {ba → aab, bc → cbb}

Hint: one system is doubly exponential, one is multiply
exponential, one is non-terminating.

A lower bound is proven by presenting a family of derivations
that achieves the desired length.
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Research Program
• Deduce upper bounds on the derivational complexity

from termination proofs.

• Characterize complexity classes via termination proof
methods: Implicit Computational Complexity.

• This talk:
Deduce lower bounds on the derivational complexity
from derivation patterns.

Applications:
• “debugging”of rewrite systems
• evaluating the strength of the automated methods

for finding upper bounds (complexity category of the
termination competition)
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www.termination-portal.org
• Workshop on termination (1st WST’93 – 11th WST’10)

• Termination competition (’04 – ’10)

• Problems
termination problem data base (tpdb) at
termcomp.uibk.ac.at/status/downloads/

• Tools (provers, verifiers)

• Complexity category, since ’08
• CaT [Korp, Sternagel, Zankl]

• TCT [Avanzini, Moser, Schnabl]

• Matchbox [W]

Focus up to now: (polynomial) upper bounds

This talk: lower bounds
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Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)
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Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)
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Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)
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Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,

bP → bQ,QA → aQ,Qa → babaa}
dcR not primitive recursive (Ackermann)
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5. Etc. (string rewriting is computationally complete)
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Upper / Lower Bounds: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,

bP → bQ,QA → aQ,Qa → babaa}
dcR not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

We can deduce some of the upper bounds automatically:

1. via match bounds

2. via upper triangular 3 × 3 matrix interpretations

3. via matrix interpretations
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Upper Bounds

• polynomial interpretations  doubly exponential
[Lautemann / Geupel / H / Zantema / . . . ]

• multiset path orders  primitive recursive [H]

• lexicographic path orders  multiple recursive
[Weiermann]

• Knuth-Bendix orders  multiple recursive (2-rec)
[H, Lautemann / Touzet / Lepper / Bonfante / Moser]

• Related [Buchholz / Touzet / Weiermann / Moser . . . ]

• match bounds  linear [Geser, H, W]

• matrix interpretations  exponential [H, W]
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Smaller Upper Bounds
Challenge: Small complexity classes.
Here, previous upper bound results heavily overestimate dcR.

Some remedies:

• Syntactic restrictions of standard path orders
• light multiset path order LMPO [Marion]

• polynomial path order POP∗: innermost derivations
on constructor-based terms [Avanzini, Moser], cf.
[Bellantoni, Cook]

• Matrix interpretations of particular shape [W]

• Context-dependent interpretations
[H / Schnabl, Moser]
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Lower Bound for Bubble Sort

ab → ba

Rule: ab →1 ba

Compose: a2b →2 ba2

Generalize: aanb →n+1 baan

Verify (induction step): aan+1b ∼ aaanb

→n+1 abaan

→1 baaan

∼ baan+1

Result: Linear lower bound
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Bubble Sort (cont’d)

ab → ba

Pattern: aanb →n+1 baan

Compose: aanbb →2(n+1) bbaan

Generalize: aanbbm →(m+1)(n+1) bbmaan

Verify (induction step): aanbbm+1 ∼ aanbbmb

→(m+1)(n+1) bbmaanb

→n+1 bbmbaan

∼ bbm+1aan

Result: Quadratic lower bound
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Similar Example: Associativity

f(f(x, y), z) → f(x, f(y, z))

• For R = [f(x, ·)] and L = [f(·, z)],

L(R(y)) = f(f(x, y), z) → f(x, f(y, z)) = R(L(y))

• Again,
Ln(Rm(y)) →n·m

R Rn(Lm(y))

this still looks like string rewriting (on Σ = {L,R})
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Example: Real Terms

f(s(x), y) → f(x, s(y))

Rule: f(s(x), y) →1 f(x, s(y))

Compose: f(s2(x), y) →2 f(x, s2(y))

Generalize: f(s(sn(x)), y) →n+1 f(x, s(sn(y)))

Verify (induction step): f(s(sn+1(x)), y) ∼ f(s(s(sn(x))), y)

→1 f(s(sn(x)), s(y))

→n+1 f(x, s(sn(s(y))))

∼ f(x, s(sn+1(y)))

Result: Linear lower bound
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Example: Real Terms (cont’d)

f(s(x), y) → f(x, s(y)), s(f(x, y)) → f(y, x)

Rule: s(f(x, y)) →1 f(y, x)

Compose: s(f(sn+1(x), y)) →n+2 f(sn+1(y), x)

Compose: s(s(f(sn+1(x), y))) →2(n+2) f(sn+1(x), y)

Generalize: s(sm(f(sn+1(x)), x) →(m+1)(n+2) f(sn+1(x), x)

Verify: similar to the previous example

Result: Quadratic lower bound

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.14/31



Derivation Patterns
derivation pattern consists of:

• lhs, rhs: term pattern

• length: numerical pattern (polynomial, . . . )

term pattern constructed from:

• term variable

• function symbol with term patterns as arguments

• iterated context application, consisting of:
• linear context: term with one hole
• iteration count: (simple?) numerical pattern
• argument: term pattern

pattern compatible with rewrite system R:
for any assignment of term and numerical variables, the
instantiated pattern is an R-derivation of the given length.
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Constructing Derivation Patterns

• rules are patterns

• compose patterns via overlap closures

• generalize via embedding

• verify by enumerating reachable terms
(apply verified patterns and induction hypothesis
modulo context equalities)
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Context Equalities

expand top: Ck+1(t) ∼ C(Ck(t))

expand bottom: Ck+1(t) ∼ Ck(C(t))

remove: C0(t) ∼ t

rotate: (CD)kC(t) ∼ C(DC)k(t)

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.17/31



Derivation Height of the Patterns
• avoid (symbolic) numerical calculations

• storing just the degree of the polynomial

• if induction hypthesis is used once in the verification of
the induction step,
then the degree of the inductive pattern is 1+ max
degree of other patterns used.

• needs extension if several numerical variables occur

• need to check that lhs of patterns have linear size
this is enforced by syntactic restrictions (context is“term
with hole”, not“term pattern with hole”)
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Polynomials of higher Degree
our patterns can describe (some) polynomial length
derivations of any given degree.

Bd = {ki → jk | k > i, j} over Σd = {1, 2, . . . , d}

B2 = {21 → 12}, B3 = {21 → 12, 31 → 23, 32 → 13, . . .}

• lower bound:
for d ≥ 2, we have dn . . . 2n1n →Θ(nd) 1n2n . . . dn

• upper bound:
upper triangular matrix interpretation of dimension d

Proof Theory and Rewriting, Obergurgl, March 30. 2010 – p.19/31



Some non-polynomial patterns
when searching for polynomial patterns,
may find something else along the way

• exponential patterns
• iterate a linear function of slope > 1

• use induction hypothesis more than once

• non-terminating patterns (looping, non-looping)
• lhs of pattern is constant, but rhs is not
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Example: Exponential Lower Bound

ab → baa

Rule: ab →1 baa

Compose: a2b →2 ba4

Generalize: aanb →n+1 ba2(n+1)

using the above, prove the Ω(2n) lower bound pattern:

Rule: ab →1 baa

Compose: ab2 →3 b2a22

Generalize: abbn →2n+1
−1 bbna2n+1
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Exponential, for a Different Reason

{0 → 1, 1 → C, 0C → 10, 1C → C0}

• Pattern 00k →≥2k

C0k.

• Base: k 7→ 0 gives 000 = 0 →2 C = C00

• Step: k 7→ k + 1 gives 00k+1 →2k+1

C0k+1.
expand: 000k, apply hypothesis: 0C0k, apply rule: 100k,
apply hypothesis: 1C0k, apply rule: C00k, collect:
C0k+1.

exponential because induction hypthesis is applied twice in
the induction step
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Non-Termination

Infinite lower bound . . .
Simple forms of non-termination

• Cycles: t →+
R

t

• Loops: t →+
R

C(tσ)

• Self-Embedding Patterns,
e.g., abxdc →+ abx+1dc (Geser/Zantema, Oppelt)

our method should be able to find patterns for such
derivations:
the lhs is constant (does not depend on numerical variables)
while the length and/or rhs are not constant
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Beyond Loops

Oppelt’s tool nonloop

• overlap closures

• derivation patterns

• self-embedding patterns

• inference rules on patterns

• Expl.s from the database:
oppelt08/* and Zantema/z073
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Oppelt’s nonloop (cont’d)

bc → dc, bd → db, ad → abb

bd →+
db

b
x

d →+
db

x

b
x+1

d →+
db

x+1

b
x+1

d →+
db

x

b

b
x+1

dc →+
db

x

bc

b
x+1

dc →+
db

x

dc

ab
x+1

dc →+
adb

x

dc

ab
x+1

dc →+
abbb

x

dc

ab
x+1

dc →+
ab

x+2
dc

results in a self-embedding derivation pattern
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Conclusion

• Rather restricted form of patterns:
only one-place contexts, restricted nesting

• No proper higher-order unification

• But suffices for many examples

• Implementation is work in progress
(main task is to control the search:
keep (promising) patterns in priority queue)
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