

ICFP Programming Contest 2010 International Cars and Fuels Production

Bertram Felgenhauer, University of Innsbruck, Austria Johannes Waldmann, HTWK Leipzig, Germany

June 18-21, 2010

Felgenhauer, Waldmann

ICFP Programming Contest 2010

About the ICFP Programming Contest

- programming, problem solving, fun
- annual contest, since 1998
- sponsored by ICFP conference/ACM
- 2010 contest hosted by HTWK Leipzig, Germany
- contest format
 - 72 hours (June 18, 12:00 June 21, 12:00 GMT)
 - participation online, international
 - teams allowed
 - no fixed programming language
 - lightning division (first 24 hours)

storyline:

market for

- cars (= problem instance) (public)
- fuels (= problem solution) (private)

storyline:

- market for
 - cars (= problem instance) (public)
 - fuels (= problem solution) (private)
- earn money by
 - (efficiently) solving instances,
 - or creating instances (with solution, which is hard to find)

income tax (devaluates earnings by 1/2 per day)

<u>File Edit View Go</u>	<u>B</u> ookmarks T <u>o</u> ols <u>T</u> abs <u>H</u> elj)	
Gack Forward	Stop Reload H	iome History	- 10
Z http://icfpcontest.o	rg/icfp10/		Go
ICFP Programmi	ing Contest 2010	Contest 2010	HTWK Leipzi
ICFP Programmi	ing Contest 2010 Welcome to the ICFP Programming Your Status	Contest 2010	H T W K Leipzi
ICFP Programmi TEAM icfpcont Logout Update Team Details SCORE Linbscore	Welcome to the ICFP Programming Your Status	Contest 2010 0.000	H T W K Leipzi
ICFP Programmi TEAM Icfpcont Logout Update Team Details SCORE Highscore TOOLS	Welcome to the ICFP Programming Your Status	Contest 2010 0.000 0	H T W K Leipzi
ICFP Programmi TEAM icfpcont Logout Update Team Details SCORE Highscore TOOLS Submit fuel	Welcome to the ICFP Programming Your Status Score: others' cars solved: cars submitted:	Contest 2010 0.000 0 0	H T W K Leipzi

Felgenhauer, Waldmann

ICFP Programming Contest 2010

storyline:

- market for
 - cars (= problem instance) (public)
 - fuels (= problem solution) (private)
- earn money by
 - (efficiently) solving instances,
 - or creating instances (with solution, which is hard to find)

income tax (devaluates earnings by 1/2 per day)

obfuscation:

storyline:

- market for
 - cars (= problem instance) (public)
 - fuels (= problem solution) (private)
- earn money by
 - (efficiently) solving instances,
 - or creating instances (with solution, which is hard to find)

income tax (devaluates earnings by 1/2 per day)

obfuscation:

- ternary stream encoding of structured data
 - (= format used for published instances)

storyline:

- market for
 - cars (= problem instance) (public)
 - fuels (= problem solution) (private)
- earn money by
 - (efficiently) solving instances,
 - or creating instances (with solution, which is hard to find)

income tax (devaluates earnings by 1/2 per day)

obfuscation:

- ternary stream encoding of structured data
 - (= format used for published instances)
- ternary circuits (with state) to produce streams
 - (= format used for submitted solutions)

About	Contest Task	Running the Contest	Background	Winners	Future		
Co	ntest Web G	UI (Submissio	n Page)				
	Back Forward	Stop Reload H	ime (5)	■ Bookmarks	ë		
	Z http://icfpcontest.or	g/icfp10/instance/264370/sol	ve		Go		
	ICFP Programn	ning Contest 2010		HTWK Leipz	rig 🔍		
	TEAM	✓ Create new Fuel					
	TEAM Create new Fuel icfpcont. Logout Update Team Details circuit output starts with o2120112100002120 this is an illegal prefix. Car: 22220002212010112220002212011012220002220000220011011						
Felgenh	nauer, Waldmann	SUBMIT					

About	Contest Task	Running the Contest	Background	Future

The Difference Engine that Moves Cars

- air: contains several ingredients: vector over ℕ, first component positive
- fuel component:

(linearly) transforms incoming air in reaction chamber: square matrix over \mathbb{N} , top left entry positive

 difference engine compares upper and lower pipe's outputs: (≥) everywhere, (>) in first component.

In other words,

 $\mathbb{M} := \text{square matrices over } \mathbb{N} \text{ with top left entry} \geq 1$ Find A, $B \in \mathbb{M}$ with $AA - ABA \in \mathbb{M}$.

Felgenhauer, Waldmann

In other words,

 $\mathbb{M} := \text{square matrices over } \mathbb{N} \text{ with top left entry} \geq 1$ Find A, $B \in \mathbb{M}$ with $AA - ABA \in \mathbb{M}$.

$$\llbracket \text{fuel } 0 \rrbracket = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \llbracket \text{fuel } 1 \rrbracket = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\llbracket \text{output} \rrbracket = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Felgenhauer, Waldmann

ICFP Programming Contest 2010

Ternary Encoding: Definition

221022000022010112201010022001122011110220010

- types: car = [([\mathbb{N}], \mathbb{N} , [\mathbb{N}])], fuel = [[[\mathbb{N}]]]
- tuples: [[(*a*, *b*)]] = [[*a*]][[*b*]]

lists:

- [[nil]] = 0, [[x : nil]] = 1[[x]]
- $[x] = 22[[len(x) 2]][x_1]] \dots [x_{len(x)}]$
- natural numbers: [[n]] = [[raw(n)]]
 - *raw*(0) = nil
 - $raw(n) = (n-1) \mod 3 : raw((n-1) \dim 3)$
 - 0, 10, 11, 12, 2 0 00...2 0 22, 2 10 000...2 10 222, ...
- contestants had to reverse engineer the encoding (from parser's error messages) (the 22 gives some redundancy)

-> PrinterParser t (Either a b)

obfuscation: circuits

Felgenhauer, Waldmann

ICFP Programming Contest 2010

output: 02120112100002120...

- one external input, one external output
- each gate has left and right inputs and outputs
- every output is connected to exactly one input
- backwards wires are delayed
- contestants had to deduce the circuit synatx (from example and error messages) and gate semantics (from our simulator's output)
- then build their own simulator, and circuit compiler.
- semantics:

output: 02120112100002120...

- one external input, one external output
- each gate has left and right inputs and outputs
- every output is connected to exactly one input
- backwards wires are delayed
- contestants had to deduce the circuit synatx (from example and error messages) and gate semantics (from our simulator's output)
- then build their own simulator, and circuit compiler.
- semantics: left: $(I r) \mod 3$, right: $(I \cdot r 1) \mod 3$

Participation

- 871 teams
- 214 teams figured out the circuit
- 146 teams submitted valid fuels
- 3,746 submitted cars
- 257,901 fuels (i.e. correct solutions)
- 350,344 bytes: max fuel (circuit description)
- 22,889 bytes: max car (ternary string)

About	Contest Task	Running the Contest	Background		Future
Statis	stical Data				
С	Country	Language	(ave	rage) Age	

Felgenhauer, Waldmann

ICFP Programming Contest 2010

About	Contest Task	Running the Contest	Background		Future
Statistical Data					
Country		Language	(averag	ge) Age	
29 28 25 12 11 8 7 5 4 4	USA Japan Russia Germany Ukraine France UK Hungary Australia Canada				

About	Contest Task	Running	the Contest	Background	Winners	Future
Statistic	al Data					
Country		Lang	uage	(avei	rage) Age	
29	USA					
28	Japan	29	Haskell			
25	Russia	17	C++			
12	Germany	16	Python			
11	Ukraine	12	Java			
8	France	7	OCaml			
7	UK	6	Ruby			
5	Hungary	5	C#			
4	Australia	3	Common Li	sp		
4	Canada		,			

About	Contest Task	Running the Contest	Background	Future

Statistical Data

Country		Lang	uage	(average) Age
29	USA			81734636191301391914 24.3333333333333
28	Japan	29	Haskell	grad student
25	Russia	17	C++	DRINKING AGE
12	Germany	16	Python	grey-beard
11	Ukraine	12	Java	22 SUCKS!
8	France	7	OCaml	54.043189 below 30
7	UK	6	Ruby	unknown
5	Hungary	5	C#	22,23
4	Australia	3	Common Lisp	0x20
4	Canada			31.3

15.5

The 2010 Contest Team

at HTWK Leipzig:

- Web server programming and maintenance: Daniel Borkmann, Tobias Kalbitz, Christopher Schädlich, Michael Schmeißer
- Web design, Brute force solver: Johannes Erber
- Log file evaluation: Christian Reichmann
- Contest task design, semantics server programming: Bertram Felgenhauer, Johannes Waldmann

external:

• testers:

Alexander Kiel (Univ. Leipzig), Georg Martius (Univ. Göttingen), Henning Thielemann (Univ. Halle)

advisor:

Robby Findler (Northwestern Univ.)

Felgenhauer, Waldmann

Hard- and Software

specs:

- Cluster of 5 \times Intel(R) Xeon(R) CPU X5365 @ 3.00GHz
- Debian GNU/Linux OS
- Web server (1 node): apache2, tomcat, Spring(Roo)/Java, postgresql
- Semantics server (4 nodes): haskell (xmlrpc, parsec, autolib)

load:

- 115,760 submissions per hour: peak server load
- 20 GB: total incoming traffic
- 768,049,967 bytes: size of gzipped contest database

• input stream 01202101210201202...

- input stream 01202101210201202... is the *ternary Morse-Thue sequence*, a squarefree D0L sequence
 - let f 0 = [0,1,2] ; f 1 = [0,2] ; f 2 = [1]
 rest = 1 : 2 : (rest >>= f)
 in 0 : rest

• input stream 01202101210201202... is the ternary Morse-Thue sequence, a squarefree D0L sequence

let f 0 = [0,1,2] ; f 1 = [0,2] ; f 2 = [1]
rest = 1 : 2 : (rest >>= f)

in 0 : rest

• module ICFP.Config where required_prefix = [1,1,0,2,1,2,1,0,1,1,2,1,0,1,2,2,1

• input stream 01202101210201202... is the ternary Morse-Thue sequence, a squarefree D0L sequence

let f 0 = [0,1,2] ; f 1 = [0,2] ; f 2 = [1]
rest = 1 : 2 : (rest >>= f)

```
in 0 : rest
```

```
• module ICFP.Config where
required_prefix = [1,1,0,2,1,2,1,0,1,1,2,1,0,1,2,2,1
is "ICFP" in morse code
```


• input stream 01202101210201202... is the ternary Morse-Thue sequence, a squarefree D0L sequence

let f 0 = [0,1,2] ; f 1 = [0,2] ; f 2 = [1]
rest = 1 : 2 : (rest >>= f)

```
in 0 : rest
```

- module ICFP.Config where required_prefix = [1,1,0,2,1,2,1,0,1,1,2,1,0,1,2,2,1 is "ICFP" in morse code
- cars: cf. racing track of 2003 contest (Chalmers)
- circuits: cf. 2D (ASCII) programming in 2006 (CMU)
- prefix: cf. 2007 contest (Utrecht)

• I really enjoyed this problem set. Our team had a ton of fun.

Felgenhauer, Waldmann

ICFP Programming Contest 2010

- I really enjoyed this problem set. Our team had a ton of fun.
- Thanks for the fun competition! You did a great job with the problem this year. It was fun to unravel layer after layer of it!

- I really enjoyed this problem set. Our team had a ton of fun.
- Thanks for the fun competition! You did a great job with the problem this year. It was fun to unravel layer after layer of it!
- I enjoyed the contest very much; while the server problems were frustrating and discouraging, we think the task was very well crafted and interesting.

- I really enjoyed this problem set. Our team had a ton of fun.
- Thanks for the fun competition! You did a great job with the problem this year. It was fun to unravel layer after layer of it!
- I enjoyed the contest very much; while the server problems were frustrating and discouraging, we think the task was very well crafted and interesting.
- We had a lot of fun. The subject was great, with a good balance between mathematics and programming. We also liked the reverse engineering approach.

- I really enjoyed this problem set. Our team had a ton of fun.
- Thanks for the fun competition! You did a great job with the problem this year. It was fun to unravel layer after layer of it!
- I enjoyed the contest very much; while the server problems were frustrating and discouraging, we think the task was very well crafted and interesting.
- We had a lot of fun. The subject was great, with a good balance between mathematics and programming. We also liked the reverse engineering approach.
- We have been participating to the ICFP programming contest for years and your subject is among the best ones.

- I really enjoyed this problem set. Our team had a ton of fun.
- Thanks for the fun competition! You did a great job with the problem this year. It was fun to unravel layer after layer of it!
- I enjoyed the contest very much; while the server problems were frustrating and discouraging, we think the task was very well crafted and interesting.
- We had a lot of fun. The subject was great, with a good balance between mathematics and programming. We also liked the reverse engineering approach.
- We have been participating to the ICFP programming contest for years and your subject is among the best ones.
- The problems with the server were frustrating (for everybody, including organizers, I'm sure).

- I really enjoyed this problem set. Our team had a ton of fun.
- Thanks for the fun competition! You did a great job with the problem this year. It was fun to unravel layer after layer of it!
- I enjoyed the contest very much; while the server problems were frustrating and discouraging, we think the task was very well crafted and interesting.
- We had a lot of fun. The subject was great, with a good balance between mathematics and programming. We also liked the reverse engineering approach.
- We have been participating to the ICFP programming contest for years and your subject is among the best ones.
- The problems with the server were frustrating (for everybody, including organizers, I'm sure).
- Your servers are failing so hard, you ruined the contest!

Background Story: Cars and Rewriting

• chambers of engine = rules

- upper, lower pipe = lhs, rhs of rewriting rule: $00 \rightarrow 010$
- fuel = matrix interpretation, a method of proving termination

Felgenhauer, Waldmann

ICFP Programming Contest 2010

Termination of Rewriting

... is undecidable, but important for software verification automated termination provers:

- Termination Competition (termcomp) (yearly, since 2004)
- Termination Problem Data Base (TPDB)

methods for automated termination analysis:

- syntactic, e.g.,
 - recursive path orders (Dershowitz, 1982)
- semantic (interpretation), e.g.,
 - polynomial functions over ℕ (Lankford, 1979)
 - linear functions (= matrices) over vectors over $\mathbb N$ (Hofbauer, Waldmann, 2006)

Felgenhauer, Waldmann

ADOUT	Contest Task	Running the Contest	васкдгоипо	Future
How to M :=	Find Matrix square matric	x Interpretation es over ℕ with top	IS left entry \geq 1	
• F	Find $A, B \in \mathbb{M}$ v	with $AA - ABA \in \mathbb{N}$	∕∏.	
• F	Find $A, B \in \mathbb{M}$ v	with $A^2B^2 - B^3A^3$	$\in \mathbb{M}.$	

Participants used these methods:

• brute force (complete or random enumeration)

About	Contest Task	Running the Contest	Background	Future
How to M :=	Find Matri square matric	x Interpretations solver \mathbb{N} with top	ns left entry \geq 1	
٩	Find $A, B \in \mathbb{M}$	with $AA - ABA \in \mathbb{N}$	M.	

• Find $A, B \in \mathbb{M}$ with $A^2B^2 - B^3A^3 \in \mathbb{M}$.

• . . .

- brute force (complete or random enumeration)
- built-in solvers of computer algebra systems

About	Contest Task	Running the Contest	Background	Future
How to ∭ :=	Find Matrix square matrice	k Interpretation label{eq:static}	IS left entry \geq 1	

- Find $A, B \in \mathbb{M}$ with $AA ABA \in \mathbb{M}$.
- Find $A, B \in \mathbb{M}$ with $A^2B^2 B^3A^3 \in \mathbb{M}$.

- brute force (complete or random enumeration)
- built-in solvers of computer algebra systems
- linear programming for 1-dimensional matrices (after taking logarithms)

About	Contest Task	Running the Contest	Background		Future
How t ™ :	o Find Ma	trix Interpretat	ions op left entry >	· 1	

- Find $A, B \in \mathbb{M}$ with $AA ABA \in \mathbb{M}$.
- Find $A, B \in \mathbb{M}$ with $A^2B^2 B^3A^3 \in \mathbb{M}$.

- brute force (complete or random enumeration)
- built-in solvers of computer algebra systems
- linear programming for 1-dimensional matrices (after taking logarithms)
- simulated annealing for higher dimensions
- similar randomized hill climbing approaches

About	Contest Task	Running the Contest	Background	Winners	Future
How to	o Find Ma = square ma	trix Interpretat trices over \mathbb{N} with t	ions op left entry >	- 1	

- Find $A, B \in \mathbb{M}$ with $AA ABA \in \mathbb{M}$.
- Find $A, B \in \mathbb{M}$ with $A^2B^2 B^3A^3 \in \mathbb{M}$.

- brute force (complete or random enumeration)
- built-in solvers of computer algebra systems
- linear programming for 1-dimensional matrices (after taking logarithms)
- simulated annealing for higher dimensions
- similar randomized hill climbing approaches
- (SMT solvers? SAT encoding?)

About	Contest Task	Running the Contest	Background	Future

... that still can be solved by matrix interpretation

Felgenhauer, Waldmann

ICFP Programming Contest 2010

About	Contest Task	Running the Contest	Background	Future

- ... that still can be solved by matrix interpretation
 - "trivial" problems like 1 ≻ 22, 2 ≻ 33, ... (needed to post these early, or often)

About	Contest Task	Running the Contest	Background	Future

- ... that still can be solved by matrix interpretation
 - "trivial" problems like 1 ≻ 22, 2 ≻ 33, ... (needed to post these early, or often)
 - systematic constructions 0121 ≻ 1211012012,
 - $0121 \succ 1211012012012, \ldots$

(can all be solved by the same interpretation)

About	Contest Task	Running the Contest	Background	Future

- ... that still can be solved by matrix interpretation
 - "trivial" problems like 1 ≻ 22, 2 ≻ 33, ... (needed to post these early, or often)
 - systematic constructions 0121 ≻ 1211012012, 0121 ≻ 1211012012012, ... (can all be solved by the same interpretation)
 - encoding of diophantine equations (but: no easy way to enforce the intended shape/semantics)

About	Contest Task	Running the Contest	Background	Future

- ... that still can be solved by matrix interpretation
 - "trivial" problems like 1 ≻ 22, 2 ≻ 33, ... (needed to post these early, or often)
 - systematic constructions 0121 ≻ 1211012012, 0121 ≻ 1211012012012, ... (can all be solved by the same interpretation)
 - encoding of diophantine equations (but: no easy way to enforce the intended shape/semantics)
 - take set of random sparse matrices (fuel), then generate matching cars. prefer length increasing rules.
 5305453 ≥ 5510450343, 5412501 > 3343403001

After the Contest

- selection of ICFP contest problems was submitted to TPDB,
- were used in Termination Competition 2010 (July): termination provers performed badly (only very few were solved)

ICFP contest problems in Termcomp

ack Forward 5	8 Stop	€ Reload Home History	N Bookmarks	् Smaller	⊕ Larger		1
http://termcomp.uibk.	ac.at/t	ermcomp/competition/categoryResults	seam?cat=950)3∁=1	85404&cid=	=347583	
		Termination Problem +	AProVE (2010-0.2) ÷	matchbox- srs-rel-nocert (0.5.6) ▲	TTT2 (2010) ÷	TTT2 (2010x) ÷	
			Select	Select	Select	Select	
	1	tpdb-7.0/TRS/ICFP_2010_relative/26186.xml	61.02	0.17	3.168	3.393	-
	2	tpdb-7.0/TRS/ICFP_2010_relative/214011.xml	15.977	0.208	1.918	2.1	
	3	tpdb-7.0/TRS/ICFP_2010_relative/212308.xml	61.277	0.214	59.924		
	4	tpdb-7.0/TRS/ICFP_2010_relative/211915.xml	38.721	0.221	2.208	2.257	
	5	tpdb-7.0/TRS/ICFP_2010_relative/213437.xml	49.874	0.229	2.01	2.258	
	6	tpdb-7.0/TRS/ICFP_2010_relative/27131.xml	61.211	0.305	7.771	7.56	
	7	tpdb-7.0/TRS/ICFP_2010_relative/27235.xml	61.281	0.395	8.804	<u>12.969</u>	
	8	tpdb-7.0/TRS/ICFP_2010_relative/41838.xml	<u>61.299</u>	0.398	60.135		
	9	tpdb-7.0/TRS/ICFP_2010_relative/27280.xml	61.213	0.407	14.134	<u>9.175</u>	
	10	tpdb-7.0/TRS/ICFP_2010_relative/48328.xml	61.34	0.47	60.32		
	11	tpdb-7.0/TRS/ICFP_2010_relative/57278.xml	61.188	0.573	60.117		
	12	tpdb-7.0/TRS/ICFP_2010_relative/157150.xml	<u>61.209</u>	0.653	60.12		
	10	tpdb-7.0/TRS/ICFP_2010_relative/26105.xml	<u>61.092</u>	0.986	60.136		
	14	tpdb-7.0/TRS/ICFP_2010_relative/25422.xml	61.222	<u>1.001</u>	60.126		
	15	tpdb-7.0/TRS/ICFP_2010_relative/26862.xml	61.203	<u>1.014</u>	60.126		
	16	tpdb-7.0/TRS/ICFP_2010_relative/26974.xml	61.039	<u>1.046</u>	60.127		
	17	tpdb-7.0/TRS/ICFP_2010_relative/27039.xml	61.202	<u>1.05</u>	60.124		
	18	tpdb-7.0/TRS/ICFP_2010_relative/27003.xml	61.085	<u>1.059</u>	60.122		
	19	tpdb-7.0/TRS/ICFP_2010_relative/25736.xml	<u>61.179</u>	1.065	60.123		

Felgenhauer, Waldmann

After the Contest

- selection of ICFP contest problems was submitted to TPDB,
- were used in Termination Competition 2010 (July): termination provers performed badly (only very few were solved)
- contest participants should consider entering their matrix solver into next termination competition (use one of the open-sourced termination tools and plug in your solver)

```
http://termination-portal.org/wiki/
Termination_Competition/
```


solve this puzzle:

M := square matrices over N with top left entry ≥ 1
 Find A, B ∈ M with A²B² − B³A³ ∈ M.

solve this puzzle:

■ M := square matrices over N with top left entry > 1 Find $A, B \in \mathbb{M}$ with $A^2B^2 - B^3A^3 \in \mathbb{M}$.

prove (or disprove and repair) this theorem:

 If a string rewriting system admits an M-interpretation, then its derivational complexity (max. derivation length, as function of start term size) is linear.

After the Contest

solve this puzzle:

■ M := square matrices over N with top left entry > 1 Find $A, B \in \mathbb{M}$ with $A^2B^2 - B^3A^3 \in \mathbb{M}$.

prove (or disprove and repair) this theorem:

• If a string rewriting system admits an M-interpretation, then its derivational complexity (max. derivation length, as function of start term size) is linear.

and submit paper to

- Intl. Workshop on Termination (next: February 2012, near Innsbruck, Austria) http://termination-portal.org/wiki/WST/
- Conf. Rewriting Techniques and Applications (RTA) (next: July 2011, Novi Sad; May 2012, Nagoya) http://rewriting.loria.fr/rta/

Felgenhauer, Waldmann

About	Contest Task	Running the Contest	Background	Winners	Future

and now ...

Felgenhauer, Waldmann

ICFP Programming Contest 2010

About	Contest Task	Running the Contest	Background	Winners	Future

and nowthe ICFP 2010 programming contest winners

Felgenhauer, Waldmann

ICFP Programming Contest 2010

Judges' Prize

for their very efficient circuit encoding (one gate per trit)

Cult of the Bound Variable ... are an extremely cool bunch of hackers. Languages: SML, C++ actually also Python, Mathematica, AMPL, Perl, bash, and PHP.

... figured out our final circuit encoding in a fit of brilliance at 2am Saturday morning (and finished implementing it in C++ before anyone who knew SML woke up, which ended up being fine)

Felgenhauer, Waldmann

Winner of the Lightning Division

best score after 24 hours produced very hard problem instances

Carl Witty(team Witrala)

Language: Sage (http://www.sagemath.org/), a computer algebra system that runs under Python.

Sage is very suitable for rapid prototyping... and a fine tool for many applications (Carl got second best score after 72 hours)

Felgenhauer, Waldmann

Winner of the Main Division

best score after 72 hours

Pure Pure Code ++ Languages: C++, Haskell, Python ... are the programming languages of choice for discriminating hackers.

Felgenhauer, Waldmann

ICFP Programming Contest 2010

The Future

- the ICFP 2011 programming contest will be run by *Eijiro Sumii* at *Tohoku University*.
- (Tell your students to) Take part in the ICFP programming contest!
- all information via
 - http://icfpcontest.org/
 - http://www.icfpconference.org/