Report on the Termination Competition 2008

Simon Bailey (Platform), Frederic Blanqui (Certification), Jürgen Giesl (LP/FP/SRS/TRS), Georg Moser (Complexity), Johannes Waldmann (editor).

Termination Competition

Termination Analyzers are applied to Termination **Problems**, results are presented on the web.

- encourage research and implementation efforts
- allow to measure progress
- show that implementations are mature, reliable and ready to be used in applications

Competitions since 2003, organized by Albert Rubio, Claude Marché, Hans Zantema. since 2008: hosted by Computational Logic Group at U Innsbruck, chair: Aart Middeldorp

What's new in 2008?

- complexity analysis
- more emphasis on certification
- automated submission and test runs of provers

What's new in 2008?

- complexity analysis
- more emphasis on certification
- automated submission and test runs of provers
- ongoing work (2009 . . .)
 - flexible query interface
 - flexible execution service

Termination Problem Semantics

- input:
 - (an effective description of a) binary relation \rightarrow (a step of a computation)
- questions:
 - termination: \rightarrow is well-founded
 - derivational complexity: length of \rightarrow -chains
- answers (yes, no, lower/upper bounds)
 - for human inspection
 - for automated verification

What Computations?

- functional program (Haskell)
- logic program (Prolog)
- rewrite system
 - unary/arbitrary signature (SRS/TRS)
 - strategy (none, inner/outermost, contextsens.)
 - start terms (all, constructor-based)
 - relative/equational: $\rightarrow_1 \circ \rightarrow_2^*, \rightarrow_1 \circ \leftrightarrow_2^*$ instances: \leftrightarrow_2^* for A, C, I

What Computations?

- functional program (Haskell)
- logic program (Prolog)
- coming: imperative programs (Java Bytecode)
- rewrite system
 - unary/arbitrary signature (SRS/TRS)
 - strategy (none, inner/outermost, contextsens.)
 - start terms (all, constructor-based)
 - relative/equational: $\rightarrow_1 \circ \rightarrow_2^*, \rightarrow_1 \circ \leftrightarrow_2^*$ instances: \leftrightarrow_2^* for A, C, I

What Computations?

- functional program (Haskell)
- logic program (Prolog)
- coming: imperative programs (Java Bytecode)
- rewrite system
 - unary/arbitrary signature (SRS/TRS)
 - strategy (none, inner/outermost, contextsens.)
 - start terms (all, constructor-based)
 - relative/equational: $\rightarrow_1 \circ \rightarrow_2^*, \rightarrow_1 \circ \leftrightarrow_2^*$ instances: \leftrightarrow_2^* for A, C, I
- coming: background theories (integers, June 0) p.5/13

What Problems?

Termination Problem Data Base					
combined categories	FP	LP	SRS	TRS	
number of problems	1676	351	777	2036	

What Problems?

Termination Problem Data Basecombined categoriesFPLPSRSTRSnumber of problems16763517772036

in 2008: use complete set of problems

- good for archival purposes
- bad for excitement

What Problems?

Termination Problem Data Basecombined categoriesFPLPSRSTRSnumber of problems16763517772036

in 2008: use complete set of problems

- good for archival purposes
- bad for excitement
- coming:
 - get more entries for TPDB
 - select subsets (benchmarks) for competition

Results: Term Rewriting

"standard" (no theory, no strategy) total 1391 problems AProVE 995 Yes 231 No $T_T T_2$ 792 Yes 178 No Jambox 750 Yes 60 No 558

Results: Term Rewriting

"standard" (no theory, no strategy) total 1391 problems
AProVE 995 Yes 231 No
T_TT₂ 792 Yes 178 No
Jambox 750 Yes 60 No
AProVE/CoLoR 558 Yes

best from corresponding certified category

Term Rewriting (non-standard)

innermost: AProve: 241 Yes, 4 No, of 358. outermost:

- total
 291 problems

 JamboxGoesOut
 72 Yes
 0 No

 T_TT₂
 0 Yes
 158 No

 TrafO
 46 Yes
 30 No

 AProVE
 27 Yes
 37 No
- modulo AC theory: AProVE: 57/2 of 71 relative: Jambox: 24/0 of 40
- contextsensitive: AProVE: 94/0 of 109

String Rewriting

total T_TT₂ AProVE 732 problems512 Yes 40 No501 Yes 22 No

Jambox 252 Yes nonloop 92 No relative: Jambox: 32/0 of 42

String Rewriting

total	732 problems			
$T_T T_2$	512 Yes	40 No		
AProVE	501 Yes	22 No		
Matchbox (cert.)	466 Yes			
Jambox	252 Yes			
nonloop		92 No		
relative: Jambox: 3				

Certified Termination

motivation: why do we believe the answers?

- SMT: sat \rightarrow print model, unsat \rightarrow ??
- Termination: no \rightarrow print loop, yes \rightarrow ??

solution: replace "??" by a formal proof, and use mechanized proof checker. approaches/implementations:

- A3PAT (Coccinelle)/Coq
- CoLoR/Coq

Certified Termination

motivation: why do we believe the answers?

- SMT: sat \rightarrow print model, unsat \rightarrow ??
- Termination: no \rightarrow print loop, yes \rightarrow ??

solution: replace "??" by a formal proof, and use mechanized proof checker. approaches/implementations:

- A3PAT (Coccinelle)/Coq
- CoLoR/Coq
- Isafor/Isabelle

Certified Termination

motivation: why do we believe the answers?

- SMT: sat \rightarrow print model, unsat \rightarrow ??
- Termination: no \rightarrow print loop, yes \rightarrow ??

solution: replace "??" by a formal proof, and use mechanized proof checker. approaches/implementations:

- A3PAT (Coccinelle)/Coq
- CoLoR/Coq
- Isafor/Isabelle
- extraction (Isafor \rightarrow Haskell)

Certified Termination (Results)

- term rewriting:
- total 1391 problems AProVE/CoLoR 558 AProve/CoLoRVA3PAT 520 Cime3/A3PAT 485 string rewriting: total 732 problems Matchbox/CoLoR 466
 - AProVE/CoLoR
 - AProve/CoLoRVA3PAT

Workshop on Termination, Leipzig, June 09 - p.11/13

406

371

Derivational Complexity

- main focus: polynomial upper bounds
- methods:
 - upper triangular matrix interpretations
 - match bounds
 - arctic matrices

more detailed output (degree of polynomial) requires more detailed scoring. result: CAT > TCT

Derivational Complexity

- main focus: polynomial upper bounds
- methods:
 - upper triangular matrix interpretations
 - match bounds
 - arctic matrices

more detailed output (degree of polynomial) requires more detailed scoring. result: CAT > TCT coming (?): lower bounds (cf. loops), more functions (exp, ack), certification

organization

- more visibility (termcomp while conference)
- define benchmarks (= problem sets)
- more efficient steering committee

- organization
 - more visibility (termcomp while conference)
 - define benchmarks (= problem sets)

- organization
 - more visibility (termcomp while conference)
 - define benchmarks (= problem sets)
- host/platform
 - more flexibility (termexec)
 - problems/results queries (also pre-2008)

- organization
 - more visibility (termcomp while conference)
 - define benchmarks (= problem sets)
- host/platform
 - more flexibility (termexec)
 - problems/results queries (also pre-2008)
- participants
 - better use of hardware (multi-core)
 - better re-use of software (modules, interfaces)