Automatic Termination

Johannes WaldmannHTWK Leipzig, Germany

Automatic **Termination**

- •• using weighted finite automata
- •• that can be found automatically
- unified view of
	- •(standard) matrix method (2006)
	- •arctic matrix method (2008)
	- •match bound method (2003)
- including some history, some alternate views andexplanations, some directions for extensions

Termination of Programs

Alan Turing: Checking ^a large routine, 1949.

. . . Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving ^a further definite assertion to be verified. This may take theform of ^a quantity which is certain to decrease continually and vanish when the machine stops. Tothe pure mathematician it is natural to give anordinal number . . . ($n-r$) ω $^{2}+(r$ $r-s$) $\omega+k.$

[http://www.turingarchive.org/browse.php/B](http://www.turingarchive.org/browse.php/B/8)/8

Combinatorial Group Theory

Max Dehn (1911): for ^a group presentation, e.g., $(X=$ $\{a,b\},R$ Y^* dooido word problam ={
{ $\,a$ 2 \equiv $1, b^3$ \equiv $1, a^ ^1ba=b^{-1}$ and $w_1, w_2\in X^*$, decide word problem w_1 $\})),$ $w_1 \leftrightarrow$ ∗ $\,R$ $w_2.$

small cancellation theory, Dehn's algorithm,. . .

. . . let $w=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/\sqrt{2}$ $b=bcd$. . . find suitable
angth . A finite number $w\,$ ′ = $= bt^{-1}$ d of shorter length. A finite number of suchreductions . . .

(cited in: Lyndon, Schupp: Combinatorial GroupTheory, 1977, Sect. V.4)

Languages and Rewriting (I)

- grammars are rewrite systems
- •• operations on languages by rewriting (completion) of automata
- e.g., REG is closed w.r.t. monadic (context-free) rewriting (rhs of length $\leq1)$ = $=$ inverse
- Proof: given ^a finite automaton, add transitions(only - not states)
- (Ronald Book, Matthias Jantzen, Celia Wrathall, 1982)

Languages and Rewriting (II)

For the solitaire game

- • \bullet rules $R=$ $\{OXX$ \longrightarrow $\rightarrow XOO, XXO$
 $\rightarrow \Omega^*XO^*$ \longrightarrow $\rightarrow OOX$,
- SOIVAN DOSITIONS $\bullet\,$ solved positions $L=O^*XO^*$,
- the set of solvable positions $R^{-*}(L)$ is a regular language. (Folklore theorem. Exercise in book byZohar Manna, 1974.)
- Exercise in book by Jean Berstel, 1979: thecongruence of $\{OXX \to XOO\}$ is a ratiol \longrightarrow $\rightarrow XOO\}$ is a rational
i-preserving) transduction (thus REG-preserving)
- Bala Ravikumar, 2004: change-bounded rewriting
. is REG-preserving, R is change-bounded (by 4). $\mathbb{R}_{\text{\tiny{RTA, Brasilia, July 09 - p.6/35}}}$

Automata and Paths

an automaton $A=(\Sigma,Q,I,F,\delta)$ determines, for
each poir of ctotes, a set of poths each pair of states, ^a set of paths.

composition of paths:

• sequential:
$$
p \xrightarrow{u} q \wedge q \xrightarrow{v} r \Rightarrow p \xrightarrow{u \cdot v} r
$$

•parallel:

$$
\begin{array}{ccc}\np_0 & \stackrel{u_1}{\rightarrow} p_1 \dots p_{k-1} & \stackrel{u_k}{\rightarrow} p_k \\
\vee & p_0 & \stackrel{u_1}{\rightarrow} p'_1 \dots p'_{k-1} & \stackrel{u_k}{\rightarrow} p_k\n\end{array} \Rightarrow p_0 \xrightarrow{u_1 \dots u_k} p_k
$$

 A computes a function $Q \times \Sigma^*$ ${}^*\times Q\to \{0,1\}$ $= \mathbb{B}$

 RTA, Brasilia, July ⁰⁹ – p.7/35

Weighted Automata

count the number of paths:

attach weights to transitions and combine: sequential: multiplication, parallel: addition

computes a function $Q\times \Sigma^*$ $4. AUL. abab.$ $^* \times Q$ $\longrightarrow \mathbb{N}$ e.g., $A(I, aabb, F) = 4, A(I, abab, F) = 3$.

with initial and final weights $I,F:Q$ - 01 $\rightarrow \mathbb{N},$ global weight function $A : \Sigma^*$
 $A(\omega)$ $^* \rightarrow \mathbb{N}$ given by $A(w) = \sum\{I(p) \cdot A(p, w, q) \cdot F(q) \mid p, q \in Q\}$

Automata $\mathbf{d} =$ **Matrices**

algebraic view of automaton: $A(w) = I \cdot ([w] \cdot F)$ algebra domain: weight vectors $D = (Q \rightarrow \mathbb{N}),$ algebra operations: for $x\in\Sigma, [x]:D_{\frac{}{\max\limits_{\mathrm{RTA, Brasiis}}}}$ RTA , Brasilia, July 09 – p.9/35

Weighted Automata/Languages

- • Marcel Schützenberger, On ^a Definition of ^aFamily of Automata, 1961.
- • Jean Berstel, Christophe Reutenauer: Rational Series and Their Languages, 1988.

formal power series in non-commutingvariables:coefficient of monomial = $=$ weight of word

• Manfred Droste, Werner Kuich, Heiko Vogler: Handbook of Weighted Automata, 2009.

Automata and Rewriting

- A is (globally) compatible with a rewrite system R :
- $\forall u,v\in \Sigma^*$.
. : $u \rightarrow_R v \Rightarrow A$ $\boldsymbol{\mathcal{U}}$ $) > A($ $\mathcal V$)
- if weight domain $(\mathbb{N},>)$ is well-founded,
- then automaton A certifies termination of R

$$
\begin{array}{c}\n\Sigma:1 & \Sigma:1 \\
\hline\n\end{array}\n\longrightarrow I \xrightarrow{a:1} \begin{array}{c}\n\Sigma:1 & \Sigma:1 \\
\hline\n\end{array}\n\longrightarrow I \xrightarrow{a:1} \begin{array}{c}\n\hline\n\end{array}\n\longrightarrow I \xrightarrow{b:1} F \xrightarrow{}
$$

- is compatible with $R=\{ab$ $\{ab$ \longrightarrow $\rightarrow ba$ }
- e.g., $A(I, aabb, F) = 4, A(I, abab, F) = 3.$ but how to prove this?

Testing Compatibility

- • $\forall p, q \in Q : A(p, l, q) \ge A(p, r, q)$
- the contract of the contract of the • $\forall u,v\in \Sigma^*$.
. $:\exists i, p, q, f\in Q$ Q :

Let A^\prime \sim obook $\frac{1}{2}$ $\frac{1}{2}$ $' = A$ plus $\{p\}$ $\,D$ $\longrightarrow q$ $q | A(p, l, q) > A(p, r, q)$ then check $\Sigma^*\cdot D\cdot \Sigma^*\subseteq {\rm supp}(A)$ α , $(\mathbb{N}$ \cdots Ω $1)$ $(\mathbb{N}$ · \cdot D \cdot Σ^* * $\subseteq \text{supp}(A'$)where $\text{supp} : (\mathbb{N}, +, \cdot, 0, 1) \to (\mathbb{B}, \mathbb{N})$ \longrightarrow $(\mathbb{B},\vee,\wedge,0,1)$

This test is PSPACE.

Simplified Compatibility (I)

"E/P" method: $I=(1,\ldots), F=(\ldots,1)^T$,

[
| $\mathcal{X}% _{0}=\mathbb{R}^{2}\times\mathbb{R}^{2}$]∈ $\bigg($ \setminus 1 $\overline{}$. . . ∗.∗.
. 1 \int ^{, [*l*}]−[$\pmb{\varUpsilon}$]∈ $\begin{pmatrix} \cdots & 1 \\ \vdots & \vdots \end{pmatrix}$. . . $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

corresponds to (extended) monotone algebra

- • \bullet domain: $(\dots,1)^T$,
- • strict order: $x_1 > y_1 \wedge x_2 \ge y_2 \wedge$ *.*
. $\wedge \, x_d \geq y_d$
- • weak order: $x_1\geq y_1\wedge$ *.*
. $\wedge \, x_d \geq y_d$
- Endrullis, W., Zantema 2006

An Example Automaton

(Dieter Hofbauer, J.W., 2006) strictly compatible w.

{
{ $\,a$ 2 $\overrightarrow{\hspace{1cm}}\longrightarrow$ $\rightarrow bc, b^2$ $\rightarrow ac, c^2$ 2 $\begin{picture}(150,70)(-10,15)(-10,1$ $\{ {\sf Hans Zantema}, 2003 \}$

Simplified Compatibility (II)

- "M/M" method: [$x|\in M\wedge|l$ —
[
] [—
[
] $|r|\in M$ **|**
| —
[
]
- where $M=\{m \mid \forall i \exists i:m_{ii}\}$ {
{ $\,m$ $m \mid \forall i \exists j: m_{ij}>0\}$
- Hofbauer/W 2006;
- Pierre Courtieu, Gladys Gbedo, Olivier Pons 2009
- what is the corresponding algebra (domain, order)?

Weighted Tree Automata

- • Σ -algebra of weight vectors $D=(Q)$ $\rightarrow \mathbb{N})$
- •• interpret $f\in\Sigma_k$ e.g., $(x, y) \mapsto$ $_k$ by multilinear $[f]:D^k$ [$\ ^{k}\rightarrow D$ $\mapsto x + x \cdot y + y$
- $\mathbf{L} = \mathbf{L} \cdot \mathbf{L} = \mathbf{L} \cdot \mathbf{L}$ •• restrict to sums of unary linear functions: path-separated weighted tree automaton [$f] : (\vec{v_1}, \ldots, \vec{v_k})$ $\mapsto M_1 \cdot \vec{v_1} +$ $\overline{}$ $+M_k\cdot \vec{v_k}+\vec{a}$ weight of tree is sum of weights of paths.
- Jörg Endrullis, Hans Zantema, J.W.: Matrix Interpretations for TRS, 2006.

Exotic semirings

- •• generalize weight domain: $\mathbb{B}, \mathbb{N}, \dots$ semirings
- •• tropical ($\mathbb{N} \cup \{+\infty\}$, $\min, +, +\infty, 0$) named after <mark>Imre Simon</mark>, Univ. Sao Paulo investigated Finite Power Property, and StarHeight Problem of regular languages(Limited Subsets of ^a Free Monoid, 1978)
- •• artic ($\mathbb{N} \cup \{-\infty\}$, max, $+$, $-\infty$, 0) the "opposite" of tropical
- •• "fuzzy" ($\mathbb{N} \cup \{-\infty, +\infty\}$, min, max, + $\infty, -\infty)$

Motivation, Applications

- degrees of polynomials: addition $\bigcap_{i=1}$ \mapsto max,
; semirir multiplication $\mathsf{u} \mapsto$ \mapsto plus (= = $=$ the arctic semiring)
- limits of "warped" classical operations:

$$
x \oplus_b y = \log_b(b^x + b^y), x \otimes y = x + y = \log_b(b^x \cdot b^y)
$$

- for $b\rightarrow+\infty$: arctic, for $b\rightarrow+0$: t $\rightarrow +0$: tropical
oniael electroi
- (large deviation theory, tropical algebraic geometry, idempotent analysis)
- tropical= $=$ (min,plus) = $=$ shortest-path algebra

Arctic Termination

- need ^a different local compatibility condition:
- standard plus is strict: $y > y^{\prime}$ $y \Rightarrow x + y > x + y$ arctic plus (= max) is not: $\max(3,2) = \max(3)$ ′= $=$ max) is not: $\max(3, 2) = \max(3, 1)$
- but it is half strict:

$$
x > x' \land y > y' \Rightarrow \max(x, y) > \max(x', y')
$$

- use $x \gg y := x > y \lor x = y = -\infty$
- and require $[l] \gg [r]$ poir **|**][]pointwise.
- Adam Koprowski, J.W., 2008including formal verification in Color/Coq.

Quasi-Periodic→**Arctic**

 $R=\,$ $\{bab$ $\longrightarrow\,a$ 3, $a^{\scriptscriptstyle\textrm{c}}$ 3 $^3 \rightarrow b^3$ Carl Witty 2006; Hans Zantema, J.W., 2007}, proof by Aleksey Nogin,

x	0	1	2	3	4	5	...
$[a](x)$	1	2	3	4	5	6	...
$[b](x)$	0	3	3	3	6	6	...
$[aab](x)$	3	4	5	6	7	8	...
$[aabb](x)$	0	3	3	3	6	6	...

 translation to arctic (period (Adam Koprowski, J.W., 2009), used by Matchbox== dimension)
20) = used by N

Match bounds

Alfons Geser, Dieter Hofbauer, J.W. 2003

RTA, Brasilia, July ⁰⁹ – p.21/35

Match bounds and Semirings

- • the automaton is actually weighted in thesemiring ($\mathbb{N} \cup \{-\infty, +\infty\}$, min, max, +c $\infty, -\infty)$
- • there is an implicit "min" in the notion of "match-compatibility"
- • local compatibility does not imply compatibility $A(ulv)>A(urv),$ since range A is finite.
- •globally, use semiring of multisets of labels.
- • matchbounds for relative termination. relative rules may keep $-\infty$. (J.W. 2007)
- •• observation: R/S match-bounded \wedge S match-bounded \Rightarrow R match-bounded.

Find Compatible Automata

- • constraint solving: for fixed dimension,
	- • describe compatibility by constraint systemstandard: QF_NIA, arctic: QF_LIA, match: QF_IDL
	- •• apply SMT solver (Barcelogic, Yices, Z3, ...)
	- •• for fixed bit width, transform to QF_BV
		- •• then SMT solver (Boolector, ...)
		- •• transform to CNF, then SAT solver (Minisat, . . .)
- •• completion

Automata by Completion

- •• problem: for automaton A , rewrite system R , compute B with $\mathrm{L}(B)=R^*(\mathrm{L}(A)).$
- •• algorithm: for each $(l\rightarrow r$ $) \in R, p$ l $\rightarrow_A q,$ ensure that p $r\,$ $\rightarrow_A q$ q by adding paths
- IOL WAIUNTAU 3 for weighted automata: condition $A(p, l, q) > A(p, r, q).$
- • problems:
	- \bullet non-termination because of added states
	- •• non-linearities (for TRS)

Completion for Matchbounds

- • can construct language closure w.r.t. rewritingat the same time
- • this is used in the RFC method (prove match-boundedness on right hand sides of forward closures)
- • state re-use heuristics (Alfons Geser, DieterHofbauer, Hans Zantema, J.W.)
- • for non-linear TRS: quasi-deterministic treeautomata (Martin Korp and Aart Middeldorp)

Completion for (plus,times)

termination proof for $\{$ \sqrt{N} \it{a} 2 $^2b^2$ $^2\rightarrow b^3$ by MultumNonMulta (Dieter Hofbauer, 2006): ${}^{\circ}a$ 3}
} start with redex path, add edges, increase weights.

note change of direction:

- •• fuzzy semiring: zero ($= +\infty$) is highest, completion goes forward (redex \longrightarrow \rightarrow reduct)
is lowest
- • $\bullet\,$ in standard semiring on $\mathbb N\colon$ zero is lowest, completion goes backward (reduct, $\frac{1}{\text{Br}_{\text{dSil}}}}$ redex) $_{\text{26/35}}$

Exact construction of automata

- R is deleting w.r.t. $>$ on Σ : for each $(l \rightarrow r)$
there is $\alpha \in l$ lerger than each $u \in \alpha$ there is $x\in l$ larger than each $y\in r$ $)\in R,$ $x\in l$ larger than each $y\in r.$
- R match-bounded \Rightarrow annotated R is deleting.
- R deleting \Rightarrow exists C, E with \longrightarrow ∗ \overline{R} \longrightarrow ∗ $\, C \,$ $\frac{1}{C}$ \circ \rightarrow ∗ $\,E$
- -1 where C terminating and context-free (SNCF)
and E inverse CF (the of length ≤ 1 in fact and E inverse CF (rhs of length ≤ 1 , in fact $= 0$)
- Corr.: R preserves REG, R^- preserves CF
- (Jörg Endrullis, Dieter Hofbauer, J.W., WST 2006)

Decomposition f. Deleting SRS

$$
for rule (l = uxv \rightarrow r) \in R, use
$$

$$
(x \rightarrow u \subset r v \rightarrow) \in C,
$$

$$
E = \{xx^{\leftarrow} \to \epsilon, x^{\rightarrow} x \to \epsilon \mid x \in \Sigma\}
$$

\n
$$
\to_{\mathbb{R}}^* = \to_{\mathbb{C}}^* \circ \to_{\mathbb{R}}^* \text{ by this diagram (a)}
$$

∗ \overline{R} \longrightarrow ∗ $\, C \,$ $\stackrel{\cdot}{C} \circ \rightarrow$ ∗ $\,E$ $_E^{\ast}$ by this diagram (and confluence)

and C terminating iff R deleting.

very efficient implementation in Jambox (2005) p.28/35

Relative Termination

- • \bullet R S for rewriting systems R, S with R ⊇ $S\,$ and $(R\setminus S)$ is terminating relative to $S,$ that is, from R , all non- S rules "could be removed".
- • $\boldsymbol{\cdot} \boldsymbol{\mathsf{\Gamma}}$ is transitive, R ∗ \emptyset implies R terminating. • $\mathfrak{M}% _{T}=\mathfrak{M}_{T}\!\left(a,b\right) ,\ \mathfrak{M}_{T}=\mathfrak{M}_{T}\!\left(a,b\right) ,$ $(W_{,n}% ^{r}\text{)}\equiv\mathcal{N}_{\infty}^{r}\text{ \ (W_{,n}% ^{r}\text{)}}\;$)
— : automaton with $\leq n$ {
{ $\{(R, S) \mid \text{there is a}$ $W\text{-}\mathsf{weighted}$ n states strictly compatible with $R\setminus S$ and weakly compatible with S $\}$

Matrix Termination Hierarchy

hierarchy $\mathfrak{M}% _{T}=\mathfrak{M}_{T}\!\left(a,b\right) ,\ \mathfrak{M}_{T}=C_{T}\!\left(a,b\right) ,$ (W,d) sfor (pairs of) rewrite systems

- •• semiring W (standard, arctic, fuzzy)
- • \bullet dimension d
- • number of proof stepss
- the usual questions about hierarchies:
	- • $\bullet\,$ is it infinite (in $d,$ in s)?
	- •• are the levels decidable?
	- •which of the obvious inclusions are strict?

Some Results on the Hierarchy (I)

- easy observation: these are decidable:
	- $\mathfrak{M}(\mathbb{R}%)=\mathfrak{M}(\mathbb{R})$ $_{\geq0},d)$ Tarski, QEPCAD
	- •• $\mathfrak{M}(\mathrm{arctic},d)$ linear inequalities
	- • \bullet $\mathfrak{M}(\text{matchbounds},d)$ difference logic
- relations between proofs over different domains:
	- •• obvious inclusions $\mathbb{N} \subseteq \mathbb{Q}_{\geq 0} \subseteq \mathrm{Alg}$ $_{\geq0} \subseteq \mathbb{R}$ $\geq \!\! 0$
	- • matchbounds \longrightarrow \rightarrow multisets \longrightarrow \rightarrow weight functions \longrightarrow \rightarrow tropical

Some Results on the Hierarchy (II)

Andreas Gebhardt and J.W. (WATA 2008)

- $\mathfrak{M}(\mathbb{N}, 0) \subset \mathfrak{M}(\mathbb{N}, 1) \subset \mathfrak{M}(\mathbb{N}, 2) \subset \mathfrak{M}(\mathbb{N}, 3)$
- AMIISUL-I AVIISKI I NAOL Amitsur-Levitski Theorem(polynomial identities in matrix rings)⇒ dimension hierarchy is infinite
- • derivation lengths \Rightarrow proof length hierarchy is infinite
 $\sum_{n=0}^{\infty}$
- $\bullet \, \, \mathfrak{M}(\mathbb{N},*)^*$ ϵ and ϵ $^*\subset\mathfrak{M}(\mathbb{Q}_{\geq 0},\ast)^*$. . . for relative termination

Derivational Complexity

- •• dc_R(s) = sup{ $k \mid \exists t, t'$.
. $|t| \leq$ $s\wedge t\to$ $\,k$ $\,R$ t^{\prime} }
- • termination proof by interpretationautomatically gives complexity information
- • general plan: from proof method, infer complexity class. (Andreas Weiermann, Dieter Hofbauer, andothers)
- •• recent interest in polynomial bounds (Georg Moser and others).

D.C. and Weighted Automata

growth bounds for matrix interpretations:

- •arctic, tropical, fuzzy (matchbounds): linear
- • standard (no restrictions: exponential)
	- • upper triangular shape: $\forall i > j : m_{ij} = 0 \wedge \forall i : m_{ii} \leq 1$ implies polynomial, degree \leq size −1
	- •• easy improvement: degree \leq $\#\{i : \exists$ $x \in \Sigma : [x]$ $\mathcal{X}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ $]_{ii}>0\}$

all diagonals $=(1,0,\ldots,0,1) \Rightarrow$ linear

Challenges in Matrix Complexity

- • polynomial matrix growth is decidable
	- (ET0L growth functions, formal power series)
	- ⇒ implement decision procedure
as constraint system (Matchbox/r as constraint system (Matchbox/poly)
- •other semirings for growth information
- •• relate to density of (regular) languages $D_L(n) = |L \cap \Sigma^n$ |
|
|
|
|

proof of the pudding: { \it{a} 2 $\begin{matrix} - & \longrightarrow \\ \end{matrix}$ $\rightarrow bc, b^2$ $\begin{array}{c} \begin{array}{c} \text{- } \end{array} \longrightarrow \mathit{ac}, \mathit{c} \ \begin{array}{c} \text{RTA, Brasilia} \end{array} \end{array}$ 2 $\begin{array}{ccc} \sim & \longrightarrow \end{array}$ $\longrightarrow ab\}$