
SMT Solvers for Termination
Provers
Johannes Waldmann

HTWK Leipzig, Germany

IFIP WG 1.6 meeting, Brasilia, July 09 – p.1/23

Constraint Solving
Programming actually is constraint solving:
the algorithm produces an output that fulfils the
specification (= the constraints).

• most programs act as application-specific
constraint solvers,

• clever programs transform the constraint
system and hand it to a general-purpose
constraint solver

• pro: benefit from the built-in knowledge
• con: overhead due to the transformation

(forth and back) IFIP WG 1.6 meeting, Brasilia, July 09 – p.2/23

Constraints from Termination
applications:

• precedences ⇒ finite domain constraints
• DP graph approximation ⇒ reachability

constraints
• coefficients for (polynomial, matrix)

interpretations ⇒ arithmetical constraints

approaches:

• direct encoding in suitable logic
• transform to bitvector logic
• transform to propositional logic (bit-wise)

IFIP WG 1.6 meeting, Brasilia, July 09 – p.3/23

SMT-lib and -comp
• SMT (satisfiability modulo theory)

• quantor-free first-order logic over numbers,
bitvectors, arrays, terms, . . .

• library of benchmarks

• competition for solvers
• typical participants: Barcelogic (UPC),

Boolector (Linz), Yices (Stanford), Z3
(Microsoft)

IFIP WG 1.6 meeting, Brasilia, July 09 – p.4/23

Preprocessing (I)
from term (rule) to its symbolic interpretation:
apply compression:

• replace repeated context fk(. . . , gl(. . .), . . .)

• by fresh function symbol hk−1+l

• and constrain its interpretation

D (* (x, y))
-> + (* (y, D (x)), * (x, D (y)))

a (x, y) = * (x, D (y))

D (* (x, y)) -> + (a (y, x), a (x, y))

nice for DP-transformed systems (lots of identicalIFIP WG 1.6 meeting, Brasilia, July 09 – p.5/23

Preprocessing (II)
The (SMT/SAT) solver should be able to recognize
identical subexpressions?
Yes, but it doesn’t know that multiplication is
associcative.
a a b b -> b b b a a a

a2 = a a ; b2 = b b
a2 b2 -> b b2 a a2

Remark (not implemented in Matchbox): should
take into account the cost of matrix multiplication:
top symbols are row vectors, instead of A(bc)
compute (Ab)c.

IFIP WG 1.6 meeting, Brasilia, July 09 – p.6/23

Polynomials
(benchmark termination :logic QF_NIA

:extrafuns ((n0 Int)) :assumption (>= n0 0)

:extrafuns ((n1 Int)) :assumption (>= n1 1)

:extrafuns ((n2 Int)) :assumption (>= n2 0)

:extrafuns ((n3 Int)) :assumption (>= n3 1)

:extrafuns ((n4 Int)) :assumption (= n4 (* n1 n2))

:extrafuns ((n5 Int)) :assumption (= n5 (+ n0 n4))

:extrafuns ((n6 Int)) :assumption (= n6 (* n1 n3))

:extrafuns ((n7 Int)) :assumption (= n7 (* n3 n0))

:extrafuns ((n8 Int)) :assumption (= n8 (+ n2 n7))

:extrafuns ((n9 Int)) :assumption (= n9 (* n3 n1))

:assumption (>= n5 n8) :assumption (>= n6 n9)

:assumption (> n5 n8) :formula true)
IFIP WG 1.6 meeting, Brasilia, July 09 – p.7/23

Polynomials: Performance
SMT logic: QF_NIA, not in recent competition, not
(reliably) supported by solvers

• yices rejects
• Z3 (2008): (many) false positives
• Z3 (2009): (some) false negatives, slow

submitted several NIA benchmarks

• sat, by bitblasting
• unsat, by derivational complexity:
{bc → cbb, ba → acb}

IFIP WG 1.6 meeting, Brasilia, July 09 – p.8/23

Arctic Arithmetic (LIA)
from arctic matrix interpretations, domain
= N ∪ {−∞},

:extrapreds ((f3)) :extrafuns ((c4 Int))

max
:ep ((f79)) :as (iff f79 (or f75 f77))
:ef ((c80 Int)) :as (= c80

(ite f75 (ite f77 (ite (> c76 c78) c76 c78)

plus
:ep ((f55)) :as (iff f55 (and f3 f19))

:ef ((c56 Int))
:as (= c56 (ite f55 (+ c4 c20) 0))

IFIP WG 1.6 meeting, Brasilia, July 09 – p.9/23

Arctic Performance
Barcelogic, Yices, Z3: fast and powerful for small
systems (matrix dim 2),
for dim ≥ 3 need several minutes.

Note: get “below zero” for free:
in RTA08 paper, replace “> −∞” by “≥ 0”,
“somewhere finite” ⇒ “somewhere positive”
domain still is N × (−∞∪ Z)∗

IFIP WG 1.6 meeting, Brasilia, July 09 – p.10/23

Arctic Trickery
intention: drop the extra boolean (for −∞):

• encode −∞ by some very low value
• introduce bounds S ≪ L,
• constrain unknowns x by

x < −L ∨ −S < x < S,
• standard operations max,plus
• x ≥′ y ⇐⇒ x ≥ y ∨ x < −L + kS

• omit −∞ (all values are > ∞)
seems to be good enough in practice

IFIP WG 1.6 meeting, Brasilia, July 09 – p.11/23

Difference Logic (IDL)
from matchbounds
special treatment of ±∞ in final comparison (not in
intermediate operations)

IFIP WG 1.6 meeting, Brasilia, July 09 – p.12/23

Z001 is match-bounded
a match-bound certificate for {a2b2 → b3a3}
/5 5 + 4 + + 5 5 +\ /1 - + + + + + + +\
|+ + + + + + + 2 +| |+ + + + + + + + +|

5 5 + 5 + + 5 5 +		5 5 + 5 + + 5 - +
5 - + 4 + + 4 5 +		5 - - + 5 + + + +
- 5 - - + - 5 - +		1 4 + 2 + + 5 1 +
5 - + 3 + + - 5 +		- - - - - - - - -
- 4 + 1 + + 4 - +		5 - 3 + 5 + + + +
+ - + + + + + + +		4 - 1 + - + + + +
\- - - - + - - - +/ \- - - - - - - - -/

IFIP WG 1.6 meeting, Brasilia, July 09 – p.13/23

Z001 is match-bounded (II)
aabb bbbaaa
/5 5 + 5 + + 5 4 +\ /4 4 + 4 + + 4 2 +\
+ + + + + + + + +		+ + + + + + + + +
5 5 + 5 + + 5 5 +		4 2 + 4 + + 4 4 +
2 4 + 2 + + 5 2 +		- 3 + 1 + + 4 - +
5 5 + 5 + + 5 3 +		4 2 + 4 + + 4 2 +
1 1 + 2 + + 5 1 +		- - + 1 + + 4 - +
4 4 + 4 + + 5 4 +		3 3 + 3 + + 4 3 +
2 4 + 2 + + 5 2 +		1 3 + 1 + + 4 1 +
\1 1 + 2 + + 5 1 +/ \- - + 1 + + 4 - +/

IFIP WG 1.6 meeting, Brasilia, July 09 – p.14/23

Bitvectors
arithmetic operations (plus, times) and
comparisons for bitvectors of fixed length
problem: these are silently overflowing.
solution: additional constraints to detect overflow
multiplication:
naive: use double bit width, restrict leading bits
clever: [x0, . . . , xn−1] × [x0, . . . , xn−1] iff
∃i, j : i + j ≥ n ∧ xixj = 1 or the MSB of the
computation with (n + 1) bits is set.
better: add non-overflowing operations to the BV
specification

IFIP WG 1.6 meeting, Brasilia, July 09 – p.15/23

Bitblasting
simulate the usual circuits for bitwise addition and
multiplication
then use SAT solver (minisat, picosat)
this can be better than SMT solver for BV

• built-in handling of overflow

• specific optimizations for small bit widths

IFIP WG 1.6 meeting, Brasilia, July 09 – p.16/23

Optimized Bitblasting
(Matchbox since 2008, with help by Peter Lietz)
idea: for a given operation, e.g.,
[p1, p2]2 × [p3, p4]2 = [p5, p6]2

• generate canoncical CNF (from truth table)
• find minimal equivalent CNF
• use linear integer programming solver to find

the best set of clauses

(p3∨¬p5)∧ (p3∨ p4∨¬p6)∧ (¬p2∨¬p4)∧ (¬p2∨¬p3∨ p6)∧ (p2∨ p4∨

¬p6)∧ (¬p1∨¬p4∨p6)∧ (¬p1∨¬p3∨p5)∧ (p1∨¬p5)∧ (p1∨¬p4∨¬p6)

minisat preprocessor removes < 1%
IFIP WG 1.6 meeting, Brasilia, July 09 – p.17/23

Optimized Bitblasting (II)
This approach is really limited to bit widths ≤ 4.
Above that, need auxiliary variables.
Then CNFs are harder to optimize
(if no semantics for additional variables is
prescribed)

IFIP WG 1.6 meeting, Brasilia, July 09 – p.18/23

Applied Bitblasting
choose any binary encoding for arctic numbers,
e.g., [−∞, 0, 1, . . . , 6] ↔ [0, 1, . . . , 7]
or below zero, e.g.,
[−∞,−2,−1, . . . , 4] ↔ [0, 1, . . . , 7]
then compute optimized CNFs from truth tables of
operations, as described. does not need any
special treatment for −∞.

IFIP WG 1.6 meeting, Brasilia, July 09 – p.19/23

Rational Bitblasting
can even handle rationals. Again, choose some
bijection
[0, 1/4, 1/3, 1/2, 1, 3/2, 2, 5/2] ↔ [0 . . . 7]
and then compute optimized CNFs for best lower
and upper approximation

can even use ⊤ (“very large number”),
makes functions total,
but ⊤ 6= ⊤

IFIP WG 1.6 meeting, Brasilia, July 09 – p.20/23

Finite Domains for Matrices?
nice “theoretical” problem:
given arbitrary (partial) functions ⊕ and ⊗ on some
finite domain, can they be used for matrix
termination proofs?
I.e., what are the necessary axioms? (ring axioms
+ strictness surely, but need to discuss “missing”
values)

IFIP WG 1.6 meeting, Brasilia, July 09 – p.21/23

Conclusion
recommendation for termination provers:

• LIA (arctic) for dimension 1 and 2

• NIA (standard) via BV (larger width) for
dimension 1 and 2

• NIA+LIA via BV via SAT (widht 3) for larger
dimension

IFIP WG 1.6 meeting, Brasilia, July 09 – p.22/23

Implementation Remarks
how to call external solvers (SAT, SMT)?

• textual (stdin, stdout)

• API

Formatting for SMT solvers
• input is well-defined (SMT)

• output is not

(components of) termination provers should be
usable as components for other software, too.

IFIP WG 1.6 meeting, Brasilia, July 09 – p.23/23

	Constraint Solving
	Constraints from Termination
	SMT-lib and -comp
	Preprocessing (I)
	Preprocessing (II)
	Polynomials
	Polynomials: Performance
	Arctic Arithmetic (LIA)
	Arctic Performance
	Arctic Trickery
	Difference Logic (IDL)
	Z001 is match-bounded
	Z001 is match-bounded (II)
	Bitvectors
	Bitblasting
	Optimized Bitblasting
	Optimized Bitblasting (II)
	Applied Bitblasting
	Rational Bitblasting
	Finite Domains for Matrices?
	Conclusion
	Implementation Remarks

