SMT Solvers for Termination
Provers

Johannes Waldmann
HTWK Leipzig, Germany

Constraint Solving

Programming actually is constraint solving:
the algorithm produces an output that fulfils the
specification (= the constraints).

- MOst programs act as application-specific
constraint solvers,

- clever programs transform the constraint
system and hand it to a general-purpose
constraint solver

- pro: benefit from the built-in knowledge

- con: overhead due to the transformation
(forth and back) [FIP WG 56 mesting, B,y 08— n3/25

Constraints from Termination

applications:

- precedences = finite domain constraints
- DP graph approximation = reachability
constraints

- coefficients for (polynomial, matrix)
interpretations = arithmetical constraints

approaches:

- direct encoding in suitable logic
- transform to bitvector logic
- tfransform to propositional logic (bit-wise)

IFIP WG 1.6 meeting, Brasilia, July 09 — p.3/23

SMT-lib and -comp

» SMT (satisfiability modulo theory)

- quantor-free first-order logic over numbers,
bitvectors, arrays, terms, ...

- library of benchmarks
- competition for solvers

- typical participants: Barcelogic (UPC),
Boolector (Linz), Yices (Stanford), Z3
(Microsoft)

Preprocessing (I)

from term (rule) to its symbolic interpretation:
apply compression:

- replace repeated context fi(...,q/(...),...)

- by fresh function symbol Aj_;4;
- and constrain its interpretation

D (x (x, y))
-> + (x (y, D (x)), * (x, D (y)))
a (x, y) =% (x, D (y))
D (x (x, y)) >+ (a (y, x), a (x, y))
nice for DP-transformed systems<lots-of-identical:

Preprocessing (ll)

The (SMT/SAT) solver should be able to recognize
identical subexpressions?

Yes, but it doesn’t know that multiplication is
associcative.

aabb->Dbbbaaa
a2 = aa ; b2 =D>b0D>D
a2 b2 -> b b2 a a2

Remark (not implemented in Matchbox): should
take Into account the cost of matrix multiplication:
top symbols are row vectors, instead of A(bc)
compute (Ab)c.

IFIP WG 1.6 meeting, Brasilia, July 09 — p.6/23

Polynomials

(benchmark termination

:extrafuns
:extrafuns
:extrafuns
:extrafuns
:extrafuns
:extrafuns
:extrafuns
:extrafuns
:extrafuns

extrafuns

((n0
((n1
((n2
((n3
((nd
((nb
((n6
((n7
((n8
((n9

rassumption (>=

Int))
Int))
Int))
Int))
Int))
Int))
Int))
Int))
Int))
Int))

rassumption
rassumption
rassumption
rassumption
rassumption
rassumption
rassumption
rassumption

rassumption

:logic QF_NIA

rassumption

n0 0)
nl 1)
n2 0)
n3 1)

nbd
noé
n’
n8
n9d

(x nl
no
nl
n3
n2
n3

n5 n8) :assumption (>= n6 n9)

:assumption (> n5 n8)

:formula true)

IFIP WG 1.6 meeting, Brasi

n2))
n4))
n3))
no))
n7))
nl))

lia, July 09 — p.7/23

Polynomials: Performance

SMT logic: QF_NIA, not in recent competition, not
(reliably) supported by solvers

» Yices rejects
- Z3 (2008): (many) false positives
- Z3 (2009): (some) false negatives, slow

submitted several NIA benchmarks

- sat, by bitblasting

- unsat, by derivational complexity:
{bc — cbb, ba — acbh}

IFIP WG 1.6 meeting, Brasilia, July 09 — p.8/23

Arctic Arithmetic (LIA)

from arctic matrix interpretations, domain
=NU{—o0},
extrapreds ((£3)) cextrafuns ((c4 Int).

max
cep ((£79)) :as (iff £79 (or f75 f77))
cef ((c80 Int)) :as (= c80

(ite f75 (ite £f77 (ite (> c76 c78) c76 c78]
plus

cep ((£55)) :as (iff £f55 (and f3 £19))
cef ((cb6 Int))

cas (= cb6 (ite £f55 (+ c4 c20) 0))

IFIP WG 1.6 meeting, Brasilia, July 09 — p.9/23

Arctic Performance

Barcelogic, Yices, Z3: fast and powerful for small

systems (matrix dim 2),
for dim > 3 need several minutes.

Note: get “below zero” for free:

In RTAOS8 paper, replace “> —oo” by “> (7,
“somewhere finite” = “somewhere positive”
domain stillis N x (—oo U Z)*

Arctic Trickery

iIntention: drop the extra boolean (for —oo):

- encode —oo by some very low value

- introduce bounds S < L,
- constrain unknowns x by
r< —LV-5<z<5,
- standard operations max,plus
cx >y <— z>yVaer<-L+EkS

- omit —oo (all values are > oo)
seems to be good enough In practice

IFIP WG 1.6 meeting, Brasilia, July 09 — p.11/23

Difference Logic (IDL)

from matchbounds
special treatment of +-oc In final comparison (not In
iIntermediate operations)

IFIP WG 1.6 meeting, Brasilia, July 09 — p.12/23

/5

o1 O1 +

Z001 1s match-bounded

a match-bound certificate for {a*b* — b’a’}

+

I+ + +
> o+
+ + + + + + + +

+ + +

4

+ =W

+

.|.

+ + +
o O+ O

+ + +
+

U1

o1 01 DN O

1 - + + + + + + +\
+ + + + 4+ + + + +
55+5++5 -+
5 --+5+ + + +
14+2++51+
5 -3+5+ + + +
4 - 1 + - + + + +

IFIP WG 1.6 meeting, Brasilia, July 09 — p.13/23

Z001 is match-bounded (I

aabb bbbaaa
/55 +5++54+\ /44+ 4+ + 4 2 +\
+ + + + + + + + + + + + + + + + + +
5b+5b++55b + 4 2 +4 + + 4 4 +
24 + 2 + + 5 2 + -3+ 1+ + 4 - +
5b5+5++5 3+ 4 2 +4 + + 4 2 +
11 +2++51+ - -+ 1+ + 4 - +
4 4 + 4 + + b 4 + 33 +3++ 43+
24+ 2+ +5 2+ 13+1++ 41+
\11+2++51+/ \--+1++4 - +/

IFIP WG 1.6 meeting, Brasilia, July 09 — p.14/23

Bitvectors

arithmetic operations (plus, times) and
comparisons for bitvectors of fixed length
problem: these are silently overflowing.

solution: additional constraints to detect overflow
multiplication:

naive. use double bit width, restrict leading bits
clever: [ZIZ(), Ce ,$n_1] X [xo, Ce ,le’n_l] Iff

di,5 1 +7 > nAxx; =1orthe MSB of the
computation with (n + 1) bits is set.

better: add non-overflowing operations to the BV
specification

IFIP WG 1.6 meeting, Brasilia, July 09 — p.15/23

Bitblasting

simulate the usual circuits for bitwise addition and
multiplication

then use SAT solver (minisat, picosat)

this can be better than SMT solver for BV

- built-in handling of overflow
- specific optimizations for small bit widths

IFIP WG 1.6 meeting, Brasilia, July 09 — p.16/23

Optimized Bitblasting

(Matchbox since 2008, with help by Peter Lietz)
idea: for a given operation, e.g.,
1, p2ls % [p3, pdls = [p5, pbl2

- generate canoncical CNF (from truth table)

- find minimal equivalent CNF

- use linear integer programming solver to find
the best set of clauses

(p3V =pb) A (p3V pdV —p6) A (—p2V —pd) A (—p2V —p3V p6) A (p2 V pd Vv
—p6) A (=plV =pdV p6) A (—plV —p3V pd) A (plV —pd) A (plV —pdV —pb)

minisat preprocessor removes < 1%

IFIP WG 1 , Brasilia, July 09 — p.17/23

Optimized Bitblasting (II)

This approach is really limited to bit widths < 4.
Above that, need auxiliary variables.
Then CNFs are harder to optimize

(If no semantics for additional variables Is
prescribed)

Applied Bitblasting

choose any binary encoding for arctic numbers,
e.g., [—o00,0,1,...,6] <~ [0,1,...,7]

or below zero, e.qg.,

—o0,—2,—1,...,4] < [0,1,...,7]

then compute optimized CNFs from truth tables of
operations, as described. does not need any
special treatment for —oo.

Rational Bitblasting

can even handle rationals. Again, choose some
bijection

0,1/4,1/3,1/2,1,3/2,2,5/2] < [0...7]

and then compute optimized CNFs for best lower
and upper approximation

can even use T (“very large number”),
makes functions total,
but T # T

IFIP WG 1.6 meeting, Brasilia, July 09 — p.20/23

Finite Domains for Matrices?

nice “theoretical” problem:
given arbitrary (partial) functions @& and & on some
finite domain, can they be used for matrix

termination proofs?
|.e., what are the necessary axioms? (ring axioms
+ strictness surely, but need to discuss “missing”

values)

IFIP WG 1.6 meeting, Brasilia, July 09 — p.21/23

Conclusion

recommendation for termination provers:
- LIA (arctic) for dimension 1 and 2

- NIA (standard) via BV (larger width) for
dimension 1 and 2

- NIA+LIA via BV via SAT (widht 3) for larger
dimension

Implementation Remarks

how to call external solvers (SAT, SMT)?
- textual (stdin, stdout)
- API
Formatting for SMT solvers
- Input Is well-defined (SMT)
. output Is not

(components of) termination provers should be
usable as components for other software, too.

IFIP WG 1.6 meeting, Brasilia, July 09 — p.23/23

	Constraint Solving
	Constraints from Termination
	SMT-lib and -comp
	Preprocessing (I)
	Preprocessing (II)
	Polynomials
	Polynomials: Performance
	Arctic Arithmetic (LIA)
	Arctic Performance
	Arctic Trickery
	Difference Logic (IDL)
	Z001 is match-bounded
	Z001 is match-bounded (II)
	Bitvectors
	Bitblasting
	Optimized Bitblasting
	Optimized Bitblasting (II)
	Applied Bitblasting
	Rational Bitblasting
	Finite Domains for Matrices?
	Conclusion
	Implementation Remarks

