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1 Introduction

String rewriting is a model of non-deterministic, step-wise computation. To
get more detailed information on derivations, positions in strings can be an-
notated by natural numbers, called heights. That means switching from an
alphabet Σ to the annotated alphabet Σ × N. For each rewrite derivation,
there is a corresponding annotated derivation. It starts with all annotations
equal to zero, and proceeds by computing annotations in the contractum
from annotations in the redex (and leaving annotations unchanged else-
where).

One example of annotated rewriting was given by Ravikumar [Rav04],
where the annotations in the contractum are obtained as successors of the
annotations at corresponding positions in the redex. These annotations are
called change heights. This definition makes sense only for length-preserving
systems, i.e., rewriting systems where for each rule, the left- and the right-
hand side have equal length.

As an example, take the rewriting system R = {abb → bba, bbb → aaa}
over the alphabet Σ = {a, b}, and the R-derivation abbbb → bbabb →
bbbba→ baaaa, where for each step, the redex is underlined. If we annotate
this derivation with change heights, we get

a0b0b0b0b0 → b1b1a1b0b0 → b1b1b2b1a1 → b1a2a3a2a1.
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The concept of change heights has been generalized by Geser and the
present authors [GHW04] to match heights: here the annotations in the
contractum are defined as the successor of the minimal annotation in the
redex. If we annotate the above derivation with match heights, we get

a0b0b0b0b0 → b1b1a1b0b0 → b1b1b1b1a1 → b1a2a2a2a1.

If there is an upper bound on the heights of all annotated R-derivations
that start from strings annotated by zero, then the string rewriting system
R is called annotation-bounded (e.g., change-bounded, match-bounded).

Match-bounded string rewriting systems effectively preserve regularity
of languages, and they are terminating. This concept can be used for auto-
mated termination provers, also for term rewriting [GHWZ07, KM07].

The inverse of a rewrite system flips all its arrows; in the example, R− =
{bba → abb, aaa → bbb}. Then the above R-derivation corresponds to the
R−-derivation baaaa→ bbbba→ bbabb→ abbbb. If we annotate this inverted
derivation with match heights, we get

b0a0a0a0a0 → b0b1b1b1a0 → b0b1a1b1b1 → a1b1b1b1b1.

These match heights of the inverse derivation are called inverse match heights
of the original derivation. Systems that are inverse match-bounded have
been treated in [GHW05], where it is shown that they effectively preserve
context-freeness, and that the termination and the uniform termination
problem are both decidable for this class. There, the relation between match-
boundedness of the original system and the inverse system has been stated
as an open question. Here, we give a partial answer: for length-preserving
systems R, the following statements are equivalent:

1. R is match-bounded,
2. R is change-bounded,
3. R is inverse change-bounded,
4. R is inverse match-bounded.

The following implications are obvious: (2) ⇒ (1) and (2) ⇔ (3). So we
have to show (1)⇒ (2), and the rest follows by symmetry.

The proof uses linear algebra in the (min,plus) semi-ring to compute
match heights. (A similar observation is that the Tetris computer game can
be modelled by (max,plus) matrices [GP97].) For lack of space, we omit the
proof here, and only illustrate the claim.
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2 Match Heights and Inverse Match Heights

For our considerations, we can completely ignore the rules of R and the
letters of Σ and consider only their height annotations instead. Then an
annotated derivation is just a sequence of strings over N. In our running
example, rules have width 3 and we apply them on a string of length 5 at
positions 0, 2, and 1 successively. We get the following sequences (redexes
underlined):

Derivation: abbbb → bbabb → bbbba→ baaaa,
Change heights: 00000→ 11100→ 11211→ 12321,
Match heights: 00000→ 11100→ 11111→ 12221,
Inverse match heights: 11111← 01111← 01110← 00000.

We now visualize this rewrite sequence, together with its match heights
and inverse match heights, as a (directed) graph. Each rewrite step corre-
sponds to a node, each edge (orientet top-down) stands for an (annotated)
position in a string. Edges are annotated by the pair of match height and
inverse match height at the corresponding position. Note that match height
annotations start at zero in the top (north) row, and inverse match height
annotations start at zero in the bottom (south) row.

�����
XXXXX t�����

XXXXX t�����
XXXXX t0 1 0 1 0 1 0 1 0 1

1 0 1 1 1 1 0 1 0 1

1 0 1 1 1 1 1 1 1 0

1 0 2 0 2 0 2 0 1 0

general pattern for one node:

������
XXXXXX ua1 d a2 d a3 d

b c1 b c2 b c3

where b = 1+min{a1, a2, a3}
and d = 1 + min{c1, c2, c3}

The question about the relation between bounds for match heights and
inverse match heights can be rephrased as a problem on planar directed
acyclic graphs as in the picture. Assume that all nodes have equal in- and
outdegree w. If each node has distance at most M from the top, is there a
bound M ′ on the distances from the bottom?

The answer is yes, and we can prove M ′ ≤ (2Mw + 1)(w + 1)M . We
do not know how sharp this bound is. Via computer experiments we found
derivations of the following inverse match heights M ′ (for given match height
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M and rule width w):

M ′ w = 1 2 3 4 5
M = 1 1 2 2 2 2

2 2 6 9 12 15
3 3 12 20
4 4 19
5 5 26

The following example illustrates rule width w = 3, match-bound M = 2
and inverse match-bound M ′ = 9.

�����
XXXXX

�����
XXXXXt t�����

XXXXX
�����

XXXXXt t�����
XXXXX

�����
XXXXX

�����
XXXXXt t t�����

XXXXX
�����

XXXXXt t�����
XXXXX

�����
XXXXXt t�����

XXXXX t�����
XXXXX t�����

XXXXX t�����
XXXXX t �����

XXXXX t�����
XXXXX t�����

XXXXX t�����
XXXXX t�����

XXXXX t�����
XXXXX t0 2 0 3 0 5 0 9 0 9 0 9 0 7 0 5 0 3 0 1

0 2 0 3 0 5 1 8 1 8 1 8 0 7 0 5 0 3 0 1

0 2 0 3 0 5 2 7 2 7 2 7 0 7 0 5 0 3 0 1

0 2 0 3 0 5 2 7 1 7 1 7 1 6 0 5 0 3 0 1

0 2 0 3 0 5 2 6 2 6 2 6 1 6 0 5 0 3 0 1

0 2 0 3 0 5 2 6 2 6 2 5 2 5 0 5 0 3 0 1

0 2 0 3 0 5 2 6 2 6 1 6 1 5 1 4 0 3 0 1

0 2 0 3 0 5 2 5 2 5 2 5 1 5 1 4 0 3 0 1

0 2 0 3 1 4 1 4 1 5 2 5 1 5 1 4 0 3 0 1

0 2 0 3 1 4 1 4 2 4 2 4 2 4 1 4 0 3 0 1

0 2 0 3 1 4 1 4 2 4 2 3 2 3 2 3 0 3 0 1

0 2 0 3 2 3 2 3 2 3 2 3 1 3 1 2 1 2 0 1

0 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 1 2 0 1

1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1

1 1 1 1 2 1 2 0 2 0 2 1 2 1 1 1 1 0 1 0

2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0
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