Non-Termination

Johannes Waldmann, HTWK Leipzig

Why (Non-)Termination

- •• rewriting models computation
- •• usually, *termination* is the goal (a computation returns ^a result = $=$ a normal form)
- • non-termination means: the rewriting system(program) is "wrong"
- • detailed information on non-termination shouldallow to debug the program
- •cf. error messages of ^a compiler for type errors
- • (non-termination is not always bad: infinite datastructures, streams, . . .)

Overview of this Talk

- Non-Termination of Rewriting:
	- •• easy: looping
	- •hard: non-looping
- Loops—really easy?
	- •yes: small loops
	- •• no: long loops (*)
- note on presentation
	- •generally, survey style, with examples
	- •• only (*) contains original research

Austro-Japanese Rewriting Workshop, Obergurgl ⁰⁷ – p.3/30

Loops in String Rewriting

- rewriting system $R=\,$ $\{ab$ derivation $\underline{ab}b \rightarrow bba\underline{ab}$ - \longrightarrow $\rightarrow bbaa$,
bbablac $\rightarrow bba\underline{ab}$ \longrightarrow $\rightarrow bb \, abb \, a\,$
- Defn: ^a loop is ^a derivation $u\rightarrow$ $\, + \,$ $\,R$ R^{\dagger} xuy with u,x,y Strings
- Thm: If R admits a loop, then R is non-terminating:

$$
u \to^+ xuy \to^+ xxuyy \to^+ \ldots
$$

Loops in Term Rewriting

System (SK90/4.54.trs)

 $GF(x,y))$ $\rightarrow F(F(GGx, GGy), F(GGx, GGy))$

derivation $t=\,$ $\sqrt{1 - \frac{1}{2}}$ $= GF(F(p,q),F(GGp,GGq))$ $F(F(GGF(p,q),*),*)$ – \longrightarrow $\Gamma(\Gamma/\Gamma)\cap\Gamma/\Gamma$ \longrightarrow $F(F(GF(\mathbb{G} Gp, \mathbb{G} Gq), \mathbb{F}(G Gp, \mathbb{G} Gq)), *), *)$

 $\text{\textbf{Context}}[C] = F(F(\cdot, *), *), \$ \rightarrow Substitution $\sigma:p\mapsto GG_p$ $\mapsto GGp, q \mapsto GGq,$

Defn: a loop is a derivation $t\rightarrow$ \mathbf{A} and \mathbf{A} Thm: R looping $\Rightarrow R$ nonterminating. $\, + \,$ $\,R$ $C[t\sigma$]

Non-Looping Non-Termination

Is every non-terminating TRS looping? No.

$$
R = \{f(0, y) \to_1 f(y, S0), f(Sx, y) \to_2 f(x, Sy)\}
$$

with infinite derivation

$$
f(0,0) \to_1 f(0, S0) \to_1 f(S0, S0) \to_2 f(0, SS0)
$$

$$
\to_1 f(S^20, S0) \to_2 f(S0, S^20) \to_2 f(0, S^30) \to_1 \dots
$$

Non-Looping Non-Termination

- Is every non-terminating SRS looping? No.
- idea (Dershowitz, Kurth, Geser and Zantema):

$$
ab^n c \rightarrow^+ ab^{n+1} c \rightarrow^+ \ldots,
$$

 computed by Turing machine with head movingright (R) or left (L)

$$
{Rb \to bR, Rc \to Lc, bL \to Lb, aL \to abR}
$$

Small Non-Loop. Non-Term. Systems

 $\{Rb$ apply ingenious sequence of transformations \longrightarrow \rightarrow bR, Rc
v ingeniou \longrightarrow $\rightarrow Lc, bL$ s sequenc \longrightarrow $\rightarrow Lb, aL$ e of trans \longrightarrow $\rightarrow abR\}$ ormation

- $R\thicksim b$: { bc \longrightarrow $\rightarrow Lc, bL$
 $\rightarrow Ia, bL$ \longrightarrow $\rightarrow Lb, aL$
 $\rightarrow Lb, aL$ \longrightarrow $\rightarrow abb$ }
 $\rightarrow abb$
- • \bullet a \sim c: $:\{ba$ \longrightarrow $\rightarrow La, bL$ \longrightarrow $\rightarrow Lb, aL$ and marks \longrightarrow $\rightarrow abb\}$ rs
- •introduce additional end markers

 $\{baL$ \longrightarrow $\rightarrow LaL, bL$ \longrightarrow $\rightarrow Lb, baL$ \longrightarrow $\rightarrow babb$

• \bullet introduce dummy (X) , merge rules

$$
\{baL \to LaLXbabb, bL \to Lb\}
$$

 $(Zantema$ and Geser, 96) $\sum_{\text{austro-Japanese Rewriting Workshop, Obergurgl 07 - p.8/30}}$

Small Non-Loop. Non-Term. Systems

$$
\{baL \to LaLXbabb, bL \to Lb\}
$$

is ^a non-terminating, non-looping

- Open: is there such ^a system with only one rule?McNaughton's conjecture (1995): No.
- related: is termination of one-rule string rewriting decidable? (treated by Kurth, Geser, ...)
- (RTALOOP #21, Dauchet): is termination of one-rule linear (left and right) TRS decidable?
- (Dauchet 1989: for one left-linear rule, no.)

Small Non-Loop. Non-Term. TRS

one-rule non-looping non-terminating(Zantema and Geser 1996)

$$
f(0, Sx, y) \to g(f(0, x, Sy), f(x, y, SS0))
$$

One-Rule Non-Loop. Non-Term. TRS

$$
f(0, Sx, y) \to g(f(0, x, Sy), f(x, y, SS0))
$$

 $g\$ g is dummy: $\left\{\begin{array}{l} f(0, Sx, y) \ f(0, Sx, y) \end{array}\right.$) \longrightarrow 1 $f(0, x, Sy)$), $f(0, Sx, y)$ $\rightarrow_2f(x,y,SS0)$ second rule only useful for $x=\,$ gives $f(0, S0, y) \rightarrow_2 f(0, y)$ $x = 0,$ $\rightarrow_2f(0,y,SS0)$, write $f(0, x, y) = F(x, y)$ and obtain

 ${F(Sx,y) \rightarrow F(x, Sy), F(S0,y) \rightarrow}$ $\rightarrow F(x, Sy), F(S0, y)$ $\rightarrow F(y,SS0)\}$

with derivations $F(S0, S^k0) \rightarrow_2$ $S0,S^k0)$ \rightarrow_2 F(S^k $0, S^20)$ \longrightarrow $\,k$ −1 1 $F(% \mathcal{N})=\mathcal{N}(\mathcal{N})$ $S0,S^{k+1}0)$

One-Rule Non-Loop. Non-Term. TRS

Is there a *linear* 1-rule non-looping non-terminating TRS? —Perhaps this is (HofWald-6):

$$
\mathcal{Q}(\mathcal{Q}(0,x),y) \to \mathcal{Q}(\mathcal{Q}(x,\mathcal{Q}(0,y)),0)
$$

write \textcircled{a} as in combinatory logic: $0xy$ \longrightarrow $x(0y)0$ write $\left| n \right\rangle$ **|**
| $n + 1] = 0$ [$\, n \,$]: ($\mathcal{X}% _{0}=\mathbb{R}^{2}\times\mathbb{R}^{2}$ $x + 1)$ $y = 0xy$ $\longrightarrow x$ $\big(y$ $y + 1)0$ derivation: $0n0\rightarrow n10\rightarrow$ _____________ + 0($\, n \,$ derivation: $0n0 \rightarrow n10 \rightarrow^+ 0(n+1)0 \ldots$
TODO: prove absence of loops.

One-Rule Non-Loop. Non-Term. TRS

so far, no automatic proof of non-termination for

 $\mathbb{O}(\mathbb{O}(0,x),y)$ \longrightarrow \rightarrow $\textcircled{a}(\textcircled{x}, \textcircled{a}(0,y)), 0)$

- Remark (Zantema, RTA07):
- non-termination is "obvious", since:
- each ground instance of the RHScontains an instance of the LHS.

Loops

- non-looping non-termination is hard . . .
- perhaps looping non-termination is easy?
- this is indeed decidable:
	- •• input: rewriting system R , number n ,
	- •• question: does R admit a loop of length $\leq n$
- (proof idea: use Makanin's algorithm for SRS, $\mathsf{narrowing}+\mathsf{complete}$ case analysis for $\mathsf{TRS?})$
- $but \dots$

Finding Loops

- this is not decidable: input: SRS R , question: is R looping?
- it is not even for length-preserving SRS.
- proof idea: R is length-preserving \Rightarrow $(R$ is
non-terminating \overline{R} is leaning) non-terminating $\iff R$ is looping)
termination for InSDS is undecided. termination for lpSRS is undecidable (Caron 1991, Matiyasevich and Senizergues 1996?)
- it seems hard already for two rules: e.g. provetermination (or find ^a loop) for $\{0000 \rightarrow 1011, 1001 \rightarrow 0100\}$ \longrightarrow $\rightarrow 1011, 1001$ \longrightarrow \rightarrow 0100} (Gebhardt/20)

Finding Loops By Brute Force

- (Lankford and Musser 78, Dershowitz 81)Defn: FC (R) (forward closures) is least set containing R and:
	- •• (inside extension) $(u, xly) \in {\sf FC}(R) \wedge (l, r) \in {\sf FC}(R)$ $R \Rightarrow (u, xry) \in {\sf FC}(R)$
	- •• (right extension) $(u, xy) \in {\sf FC}(R) \wedge (yz, r) \in {\sf F\sf C}(R)$ $R \Rightarrow (uz, xr) \in {\sf FC}(R)$
- Thm: R looping $\iff R$ admits a looping forward closure, i.e. $(u,xuy) \in {\sf FC}(R)$.

Brute Force (Implementation)

- •• keep priority queue of closures (pairs of strings)
- • \bullet initialize with R
- • extract smallest, for each successor (frominside extension and right extension):
	- •• check for loop
	- •• insert into queue

Brute Force (Implementation II)

important for implementations:

- •good hash function (queue represents set)
- • good evaluation function ("small" closures first)but what is right idea of size of (u,v) ? e.g. $|v|$ or $|u|+|v|$
- •• handle R and $\mathrm{reverse}(R)$ concurrently

performance example: Match/Jambox find loop inGebhardt-12 $\{0000$ of length 25, starting with ⁰⁰⁰⁰¹⁰⁰¹¹¹⁰, \longrightarrow $\rightarrow 0111, 1011$
a with 000010 \longrightarrow $\rightarrow 0010$ }
01110 after enumerating < 1000 closures.

Finding Loops (Variant)

- use *overlap* closures (OC), where
	- •FC: overlaps closure with rules,
	- •OC: overlaps closure with closures
- this is (essentially) the algorithm of NTI (Payet andMesnard 06)

Finding Loops (Variant)

• Aprove: apply Dependecy Pairs transformation, (restricts set of closures to be enumerated)

•TTT:

do not enumerate closures until looping one isfound,

instead ask ^a SAT solver for ^a looping closure

Long Loops

- since existence of loops is undecidable, there must be very long loops. Indeed:
- Geser (RTA 02): $\{10^p \rightarrow 0^p 1^p 0\}$ has shortest loop of length has shortest loop of length $1 + p^{0} + p^{1} + p^{2} + \ldots + p^{p-1}$ (starting from $m 10^{p^2}$
- how to (find and) certify long loops, where certificate size (and checking time) is small (e.g. logarithmical in loop length)

Lindenmayer Loops (I)

example: $\{cb$ We have a *transport system* with *pivot string* b : \longrightarrow $\rightarrow bba, ab$
ansport sv \longrightarrow $\rightarrow bca$ } (HofWald-1)
s*tem* with *nivot* string

$$
\forall x \in \Sigma : xb \to b\phi(x)
$$

$$
\phi : \Sigma \to \Sigma^* : a \mapsto ca, b \mapsto b, c \mapsto ba
$$

this implies: $\forall w\in \Sigma^*$ \blacksquare .
. $:wb$ \longrightarrow ∗ bφ(e.g. $abc\ b \rightarrow ab\ b\ ba = a\ b\ ba \rightarrow b$ $w\,$) \longrightarrow $\rightarrow ab \; b \; ba$ = $= a b ba$ \longrightarrow $\rightarrow b \ caba$ = $= b\phi(abc)$

and this can be iterated: $\forall k:wb^k$ \rightarrow ∗ $^{\ast}~b^{k}$ $\mathbf{7}$ $^{k}\phi^{k}$ $\Big($ $w\,$ e.g. $a \; bbb \rightarrow b \; ca \; bb \rightarrow^+ b\bar b \; baca \; b \rightarrow^+ b\bar bb \; b$). \longrightarrow $\rightarrow b$ ca bb \longrightarrow $+$ bb baca b : \longrightarrow $^+$ bbb b $cabaca$

(iterated morphism: cf. Lindenmayer systems)

Lindenmayer Loops (II)

$$
\phi: \Sigma \to \Sigma^* : a \mapsto ca, b \mapsto b, c \mapsto ba
$$

 ϕ

5

 ab^5

$$
\phi^1(a) = ca,
$$

\n
$$
\phi^2(a) = baca,
$$

\n
$$
\phi^3(a) = bcabaca,
$$

\n
$$
\phi^4(a) = bbacabcabaca,
$$

\n
$$
\phi^5(a) = bbcabacabbacabbaca
$$

\n
$$
(a) = \dots a(\dots b \dots)^5 \quad \text{implies the loop:}
$$

\n
$$
5 \rightarrow^+ b^5 \phi^5(a) = \dots a(\dots b \dots)^5 \rightarrow^+ ab^5
$$

Lindenmayer Loops (III)

- Geser's example R_p = $\{10^p$ $p \rightarrow 0^p$ $p_{\textstyle\c1}^{\phantom i}p$ p_{\bigodot}
- admits transport system withpivot 0^p , morphism $\phi:1\mapsto 1^p$ p0,0 $\mapsto 0,$
- it is looping with exponent p $p+1,$ since $\phi^2(1)=(1^p0)^p$ $\phi^{p+1}(1)=\phi^p(1^p0)= (\dots 10^p)^p$ containing at lea $0, \ldots$, so $\phi^k(1)$ ends with 10^k , and $m + 1$ conurance of the nive $)^{p}$ containing at least $p \$ $p+1$ occurences of the pivot 0^p .

Lindenmayer Loops (Implementation)

- in Matchbox 2007:
	- •enumerate (small) overlap closures,
	- •• extract transport systems,
	- •check whether they are looping
	- •use blocks of letters
- this algorithm is main reason for winning the "nontermination" category for string rewriting

Lindenmayer Loops (Example)

size-12-alpha-3-num-385:{ $a \rightarrow$ $\rightarrow b, cba$ \longrightarrow \rightarrow aaaccb}

pivot aaa , block alphabet $\Gamma = \{a, c, cb\}$

morphism $\phi : \Gamma$ $\,\longrightarrow\,\Gamma^*$.
. $: a \mapsto$ $\mapsto a, c \mapsto c \, cb, cb \mapsto c \, cb \, a$

since $caaa\rightarrow^2 c$ $e\ caaa \rightarrow$ $^2 \; cbab \rightarrow$ $cbaaa\rightarrow cbaba\rightarrow$ $\rightarrow aaaccb$ and
 $aaccba$ $\rightarrow cbaba$ \longrightarrow $\rightarrow aaaccba$

start/exponent: ϕ^7 $\Big($ $\, C \,$) contains $\, C \,$ $(\ldots a^3$ $^{3}\ldots)^{7}$

(system has shortest loop of length 21—but it takes much more to find it)

Lindenmayer loops: Open Problem

how to decide the following:

- • $\bullet\,$ input: a transport system (pivot $p,$ morphism $\phi)$
- • question: is it looping: are there ^a start lettersand an exponent $\,e\,$ e such that

 ϕ^e $(s) = \ldots s($ $(\ldots p \ldots)^e$

perhaps by growth properties of D0L systems

current implementation tries $e=1,2,\ldots$

(applying morphisms is still way better than doingthe rewritings since it is deterministic)

Real Life Non Termination

- theory is very nice . . .
- but will it ever be applied in "real" problems?
- Sure witness the following examples.

Real Life Non Termination Analysis

try compile/execute this Haskell programmain = print x where $x = 1 + 1 / x$

Real Life Non Termination Analysis

try to compile this Java program: public class Term { public static void main(String[] args) {while (true) { } System.out.println (42);}

}
}