
Non-Termination
Johannes Waldmann, HTWK Leipzig

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.1/30

Why (Non-)Termination

• rewriting models computation

• usually, termination is the goal (a computation
returns a result = a normal form)

• non-termination means: the rewriting system
(program) is “wrong”

• detailed information on non-termination should
allow to debug the program

• cf. error messages of a compiler for type errors
• (non-termination is not always bad: infinite data

structures, streams, . . .)
Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.2/30

Overview of this Talk

Non-Termination of Rewriting:

• easy: looping

• hard: non-looping

Loops—really easy?
• yes: small loops

• no: long loops (*)

note on presentation

• generally, survey style, with examples
• only (*) contains original research

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.3/30

Loops in String Rewriting

rewriting system R = {ab → bbaa},
derivation abb → bbaab → bb abb aa

Defn: a loop is a derivation u →+

R xuy
with u, x, y Strings

Thm: If R admits a loop, then R is non-terminating:

u →+ xuy →+ xxuyy →+ . . .

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.4/30

Loops in Term Rewriting

System (SK90/4.54.trs)

GF (x, y)) → F (F (GGx, GGy), F (GGx, GGy))

derivation t = GF (F (p, q), F (GGp, GGq)) →
F (F (GGF (p, q), ∗), ∗) →
F (F (GF (F (GGp, GGq), F (GGp, GGq)), ∗), ∗)

Context C[] = F (F (·, ∗), ∗),
Substitution σ : p 7→ GGp, q 7→ GGq,

Defn: a loop is a derivation t →+

R C[tσ]
Thm: R looping ⇒ R nonterminating.

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.5/30

Non-Looping Non-Termination

Is every non-terminating TRS looping? No.

R = {f (0, y) →1 f (y, S0), f (Sx, y) →2 f (x, Sy)}

with infinite derivation

f (0, 0) →1 f (0, S0) →1 f (S0, S0) →2 f (0, SS0)

→1 f (S20, S0) →2 f (S0, S20) →2 f (0, S30) →1 . . .

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.6/30

Non-Looping Non-Termination

Is every non-terminating SRS looping? No.

idea (Dershowitz, Kurth, Geser and Zantema):

abnc →+ abn+1c →+ . . . ,

computed by Turing machine with head moving
right (R) or left (L)

{Rb → bR, Rc → Lc, bL → Lb, aL → abR}

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.7/30

Small Non-Loop. Non-Term. Systems

{Rb → bR, Rc → Lc, bL → Lb, aL → abR}
apply ingenious sequence of transformations

• R ∼ b: {bc → Lc, bL → Lb, aL → abb}
• a ∼ c: {ba → La, bL → Lb, aL → abb}
• introduce additional end markers

{baL → LaL, bL → Lb, baL → babb}

• introduce dummy (X), merge rules

{baL → LaLXbabb, bL → Lb}

(Zantema and Geser, 96)
Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.8/30

Small Non-Loop. Non-Term. Systems

{baL → LaLXbabb, bL → Lb}

is a non-terminating, non-looping

Open: is there such a system with only one rule?
McNaughton’s conjecture (1995): No.

related: is termination of one-rule string rewriting
decidable? (treated by Kurth, Geser, . . .)

(RTALOOP #21, Dauchet): is termination of
one-rule linear (left and right) TRS decidable?

(Dauchet 1989: for one left-linear rule, no.)
Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.9/30

Small Non-Loop. Non-Term. TRS

one-rule non-looping non-terminating
(Zantema and Geser 1996)

f (0, Sx, y) → g(f (0, x, Sy), f (x, y, SS0))

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.10/30

One-Rule Non-Loop. Non-Term. TRS

f (0, Sx, y) → g(f (0, x, Sy), f (x, y, SS0))

g is dummy :

{

f (0, Sx, y) →1 f (0, x, Sy),

f (0, Sx, y) →2 f (x, y, SS0)
second rule only useful for x = 0,
gives f (0, S0, y) →2 f (0, y, SS0),

write f (0, x, y) = F (x, y) and obtain
{F (Sx, y) → F (x, Sy), F (S0, y) → F (y, SS0)}

with derivations
F (S0, Sk0) →2 F (Sk0, S20) →k−1

1
F (S0, Sk+10)

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.11/30

One-Rule Non-Loop. Non-Term. TRS

Is there a linear 1-rule non-looping non-terminating
TRS? —Perhaps this is (HofWald-6):

@(@(0, x), y) → @(@(x, @(0, y)), 0)

write @ as in combinatory logic: 0xy → x(0y)0

write [n + 1] = 0[n]: (x + 1)y = 0xy → x(y + 1)0

derivation: 0n0 → n10 →+ 0(n + 1)0 . . .

TODO: prove absence of loops.

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.12/30

One-Rule Non-Loop. Non-Term. TRS

so far, no automatic proof of non-termination for

@(@(0, x), y) → @(@(x, @(0, y)), 0)

Remark (Zantema, RTA07):

non-termination is “obvious”, since:

each ground instance of the RHS
contains an instance of the LHS.

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.13/30

Loops

non-looping non-termination is hard . . .

perhaps looping non-termination is easy?

this is indeed decidable:

• input: rewriting system R, number n,

• question: does R admit a loop of length ≤ n

(proof idea: use Makanin’s algorithm for SRS,
narrowing + complete case analysis for TRS?)

but . . .
Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.14/30

Finding Loops

this is not decidable: input: SRS R, question: is R
looping?
it is not even for length-preserving SRS.

proof idea: R is length-preserving ⇒ (R is
non-terminating ⇐⇒ R is looping)
termination for lpSRS is undecidable (Caron 1991,
Matiyasevich and Senizergues 1996?)

it seems hard already for two rules: e.g. prove
termination (or find a loop) for
{0000 → 1011, 1001 → 0100} (Gebhardt/20)

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.15/30

Finding Loops By Brute Force

(Lankford and Musser 78, Dershowitz 81)
Defn: FC(R) (forward closures) is least set
containing R and:

• (inside extension) (u, xly) ∈ FC(R) ∧ (l, r) ∈
R ⇒ (u, xry) ∈ FC(R)

• (right extension) (u, xy) ∈ FC(R) ∧ (yz, r) ∈
R ⇒ (uz, xr) ∈ FC(R)

Thm: R looping ⇐⇒ R admits a looping forward
closure, i.e. (u, xuy) ∈ FC(R).

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.16/30

Brute Force (Implementation)

• keep priority queue of closures (pairs of strings)

• initialize with R

• extract smallest, for each successor (from
inside extension and right extension):
• check for loop
• insert into queue

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.17/30

Brute Force (Implementation II)

important for implementations:

• good hash function (queue represents set)
• good evaluation function (“small” closures first)

but what is right idea of size of (u, v)?
e.g. |v| or |u| + |v|

• handle R and reverse(R) concurrently

performance example: Match/Jambox find loop in
Gebhardt-12 {0000 → 0111, 1011 → 0010}
of length 25, starting with 00001001110,
after enumerating < 1000 closures.

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.18/30

Finding Loops (Variant)

use overlap closures (OC), where

• FC: overlaps closure with rules,

• OC: overlaps closure with closures

this is (essentially) the algorithm of NTI (Payet and
Mesnard 06)

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.19/30

Finding Loops (Variant)

• Aprove: apply Dependecy Pairs transformation,
(restricts set of closures to be enumerated)

• TTT:
do not enumerate closures until looping one is
found,
instead ask a SAT solver for a looping closure

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.20/30

Long Loops

since existence of loops is undecidable,
there must be very long loops. Indeed:

Geser (RTA 02): {10p → 0p1p0}
has shortest loop of length
1 + p0 + p1 + p2 + . . . + pp−1

(starting from 10p2

)

how to (find and) certify long loops, where
certificate size (and checking time) is small
(e.g. logarithmical in loop length)

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.21/30

Lindenmayer Loops (I)

example: {cb → bba, ab → bca} (HofWald-1)
We have a transport system with pivot string b:

∀x ∈ Σ : xb → bφ(x)

φ : Σ → Σ∗ : a 7→ ca, b 7→ b, c 7→ ba

this implies: ∀w ∈ Σ∗ : wb →∗ bφ(w)
e.g. abc b → ab b ba = a b ba → b caba = bφ(abc)

and this can be iterated: ∀k : wbk →∗ bkφk(w).
e.g. a bbb → b ca bb →+ bb baca b →+ bbb bcabaca

(iterated morphism: cf. Lindenmayer systems)
Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.22/30

Lindenmayer Loops (II)

φ : Σ → Σ∗ : a 7→ ca, b 7→ b, c 7→ ba

φ1(a) = ca,

φ2(a) = baca,

φ3(a) = bcabaca,

φ4(a) = bbacabcabaca,

φ5(a) = bbcabacabbacabcabaca

φ5(a) = . . . a(. . . b . . .)5 implies the loop:

ab5 →+ b5φ5(a) = . . . a(. . . b . . .)5 →+ ab5

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.23/30

Lindenmayer Loops (III)

Geser’s example Rp = {10p → 0p1p0}

admits transport system with
pivot 0p, morphism φ : 1 7→ 1p0, 0 7→ 0,

it is looping with exponent p + 1, since
φ2(1) = (1p0)p0, . . ., so φk(1) ends with 10k, and
φp+1(1) = φp(1p0) = (. . . 10p)p containing at least
p + 1 occurences of the pivot 0p.

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.24/30

Lindenmayer Loops (Implementation)

in Matchbox 2007:

• enumerate (small) overlap closures,
• extract transport systems,

• check whether they are looping

• use blocks of letters

this algorithm is main reason for winning the “non
termination” category for string rewriting

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.25/30

Lindenmayer Loops (Example)

size-12-alpha-3-num-385: {a → b, cbab → aaaccb}

pivot aaa, block alphabet Γ = {a, c, cb}

morphism φ : Γ → Γ∗ : a 7→ a, c 7→ c cb, cb 7→ c cb a

since caaa →2 cbab → aaaccb and
cbaaa → cbaba → aaaccba

start/exponent: φ7(c) contains c(. . . a3 . . .)7

(system has shortest loop of length 21—but it
takes much more to find it)

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.26/30

Lindenmayer loops: Open Problem

how to decide the following:

• input: a transport system (pivot p, morphism φ)

• question: is it looping: are there a start letter s
and an exponent e such that
φe(s) = . . . s(. . . p . . .)e

perhaps by growth properties of D0L systems

current implementation tries e = 1, 2, . . .

(applying morphisms is still way better than doing
the rewritings since it is deterministic)

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.27/30

Real Life Non Termination

theory is very nice . . .

but will it ever be applied in “real” problems?

Sure - witness the following examples.

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.28/30

Real Life Non Termination Analysis

try compile/execute this Haskell program
main = print x where x = 1 + 1 / x

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.29/30

Real Life Non Termination Analysis

try to compile this Java program:
public class Term {

public static void main(String[] args) {
while (true) { }
System.out.println (42);

}
}

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.30/30

	Why (Non-)Termination
	Overview of this Talk
	Loops in String Rewriting
	Loops in Term Rewriting
	Non-Looping Non-Termination
	Non-Looping Non-Termination
	Small Non-Loop. Non-Term. Systems
	Small Non-Loop. Non-Term. Systems
	Small Non-Loop. Non-Term. TRS
	One-Rule Non-Loop. Non-Term. TRS
	One-Rule Non-Loop. Non-Term. TRS
	One-Rule Non-Loop. Non-Term. TRS
	Loops
	Finding Loops
	Finding Loops By Brute Force
	Brute Force (Implementation)
	Brute Force (Implementation II)
	Finding Loops (Variant)
	Finding Loops (Variant)
	Long Loops
	Lindenmayer Loops (I)
	Lindenmayer Loops (II)
	Lindenmayer Loops (III)
	Lindenmayer Loops (Implementation)
	Lindenmayer Loops (Example)
	Lindenmayer loops: Open Problem
	Real Life Non Termination
	Real Life Non Termination Analysis
	Real Life Non Termination Analysis

