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Why (Non-)Termination

• rewriting models computation

• usually, termination is the goal (a computation
returns a result = a normal form)

• non-termination means: the rewriting system
(program) is “wrong”

• detailed information on non-termination should
allow to debug the program

• cf. error messages of a compiler for type errors
• (non-termination is not always bad: infinite data

structures, streams, . . . )
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Overview of this Talk

Non-Termination of Rewriting:

• easy: looping

• hard: non-looping

Loops—really easy?
• yes: small loops

• no: long loops (*)

note on presentation

• generally, survey style, with examples
• only (*) contains original research
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Loops in String Rewriting

rewriting system R = {ab → bbaa},
derivation abb → bbaab → bb abb aa

Defn: a loop is a derivation u →+

R xuy
with u, x, y Strings

Thm: If R admits a loop, then R is non-terminating:

u →+ xuy →+ xxuyy →+ . . .
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Loops in Term Rewriting

System (SK90/4.54.trs)

GF (x, y)) → F (F (GGx, GGy), F (GGx, GGy))

derivation t = GF (F (p, q), F (GGp, GGq)) →
F (F (GGF (p, q), ∗), ∗) →
F (F (GF (F (GGp, GGq), F (GGp, GGq)), ∗), ∗)

Context C[] = F (F (·, ∗), ∗),
Substitution σ : p 7→ GGp, q 7→ GGq,

Defn: a loop is a derivation t →+

R C[tσ]
Thm: R looping ⇒ R nonterminating.
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Non-Looping Non-Termination

Is every non-terminating TRS looping? No.

R = {f (0, y) →1 f (y, S0), f (Sx, y) →2 f (x, Sy)}

with infinite derivation

f (0, 0) →1 f (0, S0) →1 f (S0, S0) →2 f (0, SS0)

→1 f (S20, S0) →2 f (S0, S20) →2 f (0, S30) →1 . . .
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Non-Looping Non-Termination

Is every non-terminating SRS looping? No.

idea (Dershowitz, Kurth, Geser and Zantema):

abnc →+ abn+1c →+ . . . ,

computed by Turing machine with head moving
right (R) or left (L)

{Rb → bR, Rc → Lc, bL → Lb, aL → abR}
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Small Non-Loop. Non-Term. Systems

{Rb → bR, Rc → Lc, bL → Lb, aL → abR}
apply ingenious sequence of transformations

• R ∼ b: {bc → Lc, bL → Lb, aL → abb}
• a ∼ c: {ba → La, bL → Lb, aL → abb}
• introduce additional end markers

{baL → LaL, bL → Lb, baL → babb}

• introduce dummy (X), merge rules

{baL → LaLXbabb, bL → Lb}

(Zantema and Geser, 96)
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Small Non-Loop. Non-Term. Systems

{baL → LaLXbabb, bL → Lb}

is a non-terminating, non-looping

Open: is there such a system with only one rule?
McNaughton’s conjecture (1995): No.

related: is termination of one-rule string rewriting
decidable? (treated by Kurth, Geser, . . . )

(RTALOOP #21, Dauchet): is termination of
one-rule linear (left and right) TRS decidable?

(Dauchet 1989: for one left-linear rule, no.)
Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.9/30



Small Non-Loop. Non-Term. TRS

one-rule non-looping non-terminating
(Zantema and Geser 1996)

f (0, Sx, y) → g(f (0, x, Sy), f (x, y, SS0))
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One-Rule Non-Loop. Non-Term. TRS

f (0, Sx, y) → g(f (0, x, Sy), f (x, y, SS0))

g is dummy :

{

f (0, Sx, y) →1 f (0, x, Sy),

f (0, Sx, y) →2 f (x, y, SS0)
second rule only useful for x = 0,
gives f (0, S0, y) →2 f (0, y, SS0),

write f (0, x, y) = F (x, y) and obtain
{F (Sx, y) → F (x, Sy), F (S0, y) → F (y, SS0)}

with derivations
F (S0, Sk0) →2 F (Sk0, S20) →k−1

1
F (S0, Sk+10)
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One-Rule Non-Loop. Non-Term. TRS

Is there a linear 1-rule non-looping non-terminating
TRS? —Perhaps this is (HofWald-6):

@(@(0, x), y) → @(@(x, @(0, y)), 0)

write @ as in combinatory logic: 0xy → x(0y)0

write [n + 1] = 0[n]: (x + 1)y = 0xy → x(y + 1)0

derivation: 0n0 → n10 →+ 0(n + 1)0 . . .

TODO: prove absence of loops.
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One-Rule Non-Loop. Non-Term. TRS

so far, no automatic proof of non-termination for

@(@(0, x), y) → @(@(x, @(0, y)), 0)

Remark (Zantema, RTA07):

non-termination is “obvious”, since:

each ground instance of the RHS
contains an instance of the LHS.
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Loops

non-looping non-termination is hard . . .

perhaps looping non-termination is easy?

this is indeed decidable:

• input: rewriting system R, number n,

• question: does R admit a loop of length ≤ n

(proof idea: use Makanin’s algorithm for SRS,
narrowing + complete case analysis for TRS?)

but . . .
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Finding Loops

this is not decidable: input: SRS R, question: is R
looping?
it is not even for length-preserving SRS.

proof idea: R is length-preserving ⇒ (R is
non-terminating ⇐⇒ R is looping)
termination for lpSRS is undecidable (Caron 1991,
Matiyasevich and Senizergues 1996?)

it seems hard already for two rules: e.g. prove
termination (or find a loop) for
{0000 → 1011, 1001 → 0100} (Gebhardt/20)

Austro-Japanese Rewriting Workshop, Obergurgl 07 – p.15/30



Finding Loops By Brute Force

(Lankford and Musser 78, Dershowitz 81)
Defn: FC(R) (forward closures) is least set
containing R and:

• (inside extension) (u, xly) ∈ FC(R) ∧ (l, r) ∈
R ⇒ (u, xry) ∈ FC(R)

• (right extension) (u, xy) ∈ FC(R) ∧ (yz, r) ∈
R ⇒ (uz, xr) ∈ FC(R)

Thm: R looping ⇐⇒ R admits a looping forward
closure, i.e. (u, xuy) ∈ FC(R).
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Brute Force (Implementation)

• keep priority queue of closures (pairs of strings)

• initialize with R

• extract smallest, for each successor (from
inside extension and right extension):
• check for loop
• insert into queue
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Brute Force (Implementation II)

important for implementations:

• good hash function (queue represents set)
• good evaluation function (“small” closures first)

but what is right idea of size of (u, v)?
e.g. |v| or |u| + |v|

• handle R and reverse(R) concurrently

performance example: Match/Jambox find loop in
Gebhardt-12 {0000 → 0111, 1011 → 0010}
of length 25, starting with 00001001110,
after enumerating < 1000 closures.
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Finding Loops (Variant)

use overlap closures (OC), where

• FC: overlaps closure with rules,

• OC: overlaps closure with closures

this is (essentially) the algorithm of NTI (Payet and
Mesnard 06)
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Finding Loops (Variant)

• Aprove: apply Dependecy Pairs transformation,
(restricts set of closures to be enumerated)

• TTT:
do not enumerate closures until looping one is
found,
instead ask a SAT solver for a looping closure
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Long Loops

since existence of loops is undecidable,
there must be very long loops. Indeed:

Geser (RTA 02): {10p → 0p1p0}
has shortest loop of length
1 + p0 + p1 + p2 + . . . + pp−1

(starting from 10p2

)

how to (find and) certify long loops, where
certificate size (and checking time) is small
(e.g. logarithmical in loop length)
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Lindenmayer Loops (I)

example: {cb → bba, ab → bca} (HofWald-1)
We have a transport system with pivot string b:

∀x ∈ Σ : xb → bφ(x)

φ : Σ → Σ∗ : a 7→ ca, b 7→ b, c 7→ ba

this implies: ∀w ∈ Σ∗ : wb →∗ bφ(w)
e.g. abc b → ab b ba = a b ba → b caba = bφ(abc)

and this can be iterated: ∀k : wbk →∗ bkφk(w).
e.g. a bbb → b ca bb →+ bb baca b →+ bbb bcabaca

(iterated morphism: cf. Lindenmayer systems)
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Lindenmayer Loops (II)

φ : Σ → Σ∗ : a 7→ ca, b 7→ b, c 7→ ba

φ1(a) = ca,

φ2(a) = baca,

φ3(a) = bcabaca,

φ4(a) = bbacabcabaca,

φ5(a) = bbcabacabbacabcabaca

φ5(a) = . . . a(. . . b . . .)5 implies the loop:

ab5 →+ b5φ5(a) = . . . a(. . . b . . .)5 →+ ab5
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Lindenmayer Loops (III)

Geser’s example Rp = {10p → 0p1p0}

admits transport system with
pivot 0p, morphism φ : 1 7→ 1p0, 0 7→ 0,

it is looping with exponent p + 1, since
φ2(1) = (1p0)p0, . . ., so φk(1) ends with 10k, and
φp+1(1) = φp(1p0) = (. . . 10p)p containing at least
p + 1 occurences of the pivot 0p.
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Lindenmayer Loops (Implementation)

in Matchbox 2007:

• enumerate (small) overlap closures,
• extract transport systems,

• check whether they are looping

• use blocks of letters

this algorithm is main reason for winning the “non
termination” category for string rewriting
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Lindenmayer Loops (Example)

size-12-alpha-3-num-385: {a → b, cbab → aaaccb}

pivot aaa, block alphabet Γ = {a, c, cb}

morphism φ : Γ → Γ∗ : a 7→ a, c 7→ c cb, cb 7→ c cb a

since caaa →2 cbab → aaaccb and
cbaaa → cbaba → aaaccba

start/exponent: φ7(c) contains c(. . . a3 . . .)7

(system has shortest loop of length 21—but it
takes much more to find it)
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Lindenmayer loops: Open Problem

how to decide the following:

• input: a transport system (pivot p, morphism φ)

• question: is it looping: are there a start letter s
and an exponent e such that
φe(s) = . . . s(. . . p . . .)e

perhaps by growth properties of D0L systems

current implementation tries e = 1, 2, . . .

(applying morphisms is still way better than doing
the rewritings since it is deterministic)
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Real Life Non Termination

theory is very nice . . .

but will it ever be applied in “real” problems?

Sure - witness the following examples.
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Real Life Non Termination Analysis

try compile/execute this Haskell program
main = print x where x = 1 + 1 / x
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Real Life Non Termination Analysis

try to compile this Java program:
public class Term {

public static void main(String[] args) {
while (true) { }
System.out.println (42);

}
}
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