"Free" SCC Analysis via Constant Interpretations

Johannes Waldmann, HTWK Leipzig

WST, Seattle, August 2006 - p.1/??

Motivation

- implementation of dependency pairs method
- that constructs (something like) the DP graph and its strongly connected components
- from (matrix) interpretations (found via SAT solver)
- with very little additional implementation cost

(this is the method of Matchbox/TRS in 2006)

DP Method

- ... transforms a standard termination problem
- into a *relative top*-termination problem:
- $SN(\rightarrow_R)$ is equivalent to $SN(DP(R)_{top}/R)$.
- Example: $R = \{aa \rightarrow aba\}$ over $\Sigma = \{a, b\}$,
- then $DP(R) = \{Aa \rightarrow Aba, Aa \rightarrow A\}$
- over $\Sigma \cup \Sigma'$ with $\Sigma' = \{A, B\}$.

Interpretations for DP Problems

alphabets Σ (original) and Σ' (defined symbols) two-sorted algebra with sorts (S, \gtrsim) and (T, >)interpretation $[\cdot]: \Sigma \to (S^* \to S), \Sigma' \to (S^* \to T)$

- each [f] weakly monotone in each argument w.r.t. \gtrsim resp. \geq

•
$$\forall (l \to r) \in R : \forall \alpha \in \text{Var} \to A : [l, \alpha] \gtrsim [r, \alpha]$$

• $\forall (l \to r) \in D : \forall \alpha \in \text{Var} \to A : [l, \alpha] > [r, \alpha],$

implies $SN(D_{top}/R)$.

Matrix Interpretations for DP

sort S = column vectors $\mathbb{N}^{1 \times d}$, T = naturals $\mathbb{N}^{1 \times 1}$. order \gtrsim on S component-wise, > on T standard. interpretation [f] is linear function

$$[f](x_1,\ldots,x_k)=M_1\cdot x_1+\ldots+M_k\cdot x_k+v.$$

- for matrices $M_1, \ldots, M_k \in \mathbb{N}^{e \times d}$, vector $v \in \mathbb{N}^{e \times 1}$, for $e \in \{d, 1\}$.
- interpretations $[l,\alpha],[r,\alpha]$ are also linear functions
- weak monotonicity: \geq for pairs of coefficients, strict monotonicity: > in absolute part $_{\text{WST, Seattle, August 2006 1}}$

Splitting DP Problems

consider such an interpretation where

- $\forall (l \rightarrow r) \in D$, $[l, \alpha]$ and $[r, \alpha]$ are constant
- (= do not depend on value of variables α)
- level h of D, written D_h ,
- consists of all rules $(l \rightarrow r) \in D$ where $[l, \alpha] = [r, \alpha] = \text{const } h$.

 $\mathrm{SN}(D_{0,\mathrm{top}}/R) \wedge \ldots \wedge \mathrm{SN}(D_{k,\mathrm{top}}/R) \iff \mathrm{SN}(D_{\mathrm{top}}/R)$

Example (I)

$$R = \{ab \to a^3, b^3 \to a^2ba^2, bab^2 \to b^3ab\}.$$
$$D = \begin{cases} Ab \to Aa^{0,1,2}, \\ Bb^2 \to Aa^{0,1}ba^2, Bb^2 \to Ba^2, Bb^2 \to Aa^{0,1}, \\ Bab^2 \to Bb^{0,1,2}ab, Bab^2 \to Ab, \end{cases}$$

0-dimensional interpretation (vectors of length 0 for sort S) and [A](x) = 0, [B](x) = 1:

• level one: $\{Bb^2 \rightarrow Ba^2, Bab^2 \rightarrow Bb^{0,1,2}ab\}$,

• level zero: $Ab \rightarrow Aa^{0,1,2}$

ignore decreasing rules $B \ldots \rightarrow A^{\text{wst, Seattle, August 2006 - p.7/??}}$

Example (II)

For level zero ($Ab \rightarrow Aa^{0,1,2}$) use interpretation

$$a: x \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot x,$$
$$b: x \mapsto \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \cdot x + \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$A: x \mapsto \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot x.$$

weakly monotonic for $R,\, {\rm strictly}$ monotonic for level zero of D

Example (III)

For level one $\{Bb^2 \rightarrow Ba^2, Bab^2 \rightarrow Bb^{0,1,2}ab\}$, use

$$a: x \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot x + \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$
$$b: x \mapsto \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, B: x \mapsto \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot x.$$

weakly monotonic for $R \cup D$ and constant for D: $\forall t \in \{Bb^2, Ba^2, Bb^{1,2}ab\} : [t](x) = 0$ $\forall t \in \{Bab^2, Bab\} : [t](x) = 1.$ Remove (decreasing) $\{Bab^2 \rightarrow Bb^{1,2}ab\}$ and split :

 $SN(Bb^2 \rightarrow Ba^3/R)$ and $SN(Bab^2 \rightarrow Bab/R)$.

Discussion (Example)

- Termination of R cannot be shown by "pure" dependency pair approach (Aprove, TTT give up)
- There is a termination proof via labelling w.r.t. a (quasi) model in $\{0,1\}^2$ (found by Torpa-1.4 and TPA-1.0)
- and there is a 4×4 -matrix interpretation (found by the Xbox provers).
- Splitting via constant interpretations helps to reduce the proof obligations, as the matrix dimension is reduced from 4×4 to 2×2 .

Discussion (general)

- method can (to some extent) replace SCC analysis of DP graph
- implementation is trivial for provers that already have a constraint solver that finds (matrix) interpretations.
- method is "verifier-friendly"

The exact relation between our splitting construction and standard algorithms remains open.

Literatur

- [AG00] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. *Theoret. Comput. Sci.*, 236:133–178, 2000.
- [EWZ06] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination of term rewriting. *Proc. 3rd Int. Conf. Automated Reasoning IJCAR-06*, to appear, 2006.
- [M02] A. Middeldorp. Approximations for Strategies and Termination. Proc. 2nd Int. Workshop on Reduction Strategies in Rewriting and Programming WRS-02, Copenhagen, Electronic Notes in Computer Science 70(6), 2002.
- [HW06] D. Hofbauer and J. Waldmann. Matrix interpretations for proving termination of string rewriting. *Proc. 17th Int. Conf. Rewriting Techniques and Applications RTA-06*, to appear, 2006.