Complexity bounds from relative termination proofs

Dieter Hofbauer, Kassel Johannes Waldmann, HTWK Leipzig

Derivational Complexity: Definition

The derivational complexity of a terminating (rewrite) relation \rightarrow on a set of terms T is a mapping $dc : \mathbb{N} \rightarrow \mathbb{N}$ with

 $dc_{\rightarrow}: n \mapsto \max\{m \mid \exists x, y \in T: |x| \le n \land x \to^m y\}$

where $|_|: T \to \mathbb{N}$ is an appropriate size measure.

- $\operatorname{dc}_{\to}(n+1) \ge \operatorname{dc}_{\to}(n)$
- $dc_{\rightarrow}(n) \in \Omega(n)$ for non-empty \rightarrow (uses "context")

Derivational Complexity: Definition

The derivational complexity of a terminating (rewrite) relation \rightarrow on a set of terms T is a mapping $dc : \mathbb{N} \rightarrow \mathbb{N}$ with

 $dc_{\rightarrow}: n \mapsto \max\{m \mid \exists x, y \in T: |x| \le n \land x \to^m y\}$

where $|_|: T \to \mathbb{N}$ is an appropriate size measure.

•
$$\operatorname{dc}_{\to}(n+1) \ge \operatorname{dc}_{\to}(n)$$

• $dc_{\rightarrow}(n) \in \Omega(n)$ for non-empty \rightarrow (uses "context")

Bridges to proof theory:

- Complexity bounds from termination proofs
- In general, dc_{\rightarrow} is an ordinal . . .

String Rewriting: Definitions

- Letter: element of a set Σ , the alphabet
- String: sequence of letters. Σ^* is the set of strings over Σ
- String rewriting system: set of rules of the form $\ell \to r$, i.e. a set $R \subseteq \Sigma^* \times \Sigma^*$
- Rewrite step: replace the left hand side of rule $\ell \to r$ by its right hand side: $x\ell y \to_R xry$ within context $x, y \in \Sigma^*$
- Derivation: chain of rewrite steps

String Rewriting: Definitions

- Letter: element of a set Σ , the alphabet
- String: sequence of letters. Σ^* is the set of strings over Σ
- String rewriting system: set of rules of the form $\ell \to r$, i.e. a set $R \subseteq \Sigma^* \times \Sigma^*$
- Rewrite step: replace the left hand side of rule $\ell \to r$ by its right hand side: $x\ell y \to_R xry$ within context $x, y \in \Sigma^*$
- Derivation: chain of rewrite steps

Why study string rewriting in this context?

• A particular case of more general computation models: term / higher-order / graph / ... / rewriting systems

String Rewriting: Example $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces e.g. the derivation $b \ b \ a \ a \rightarrow_R$ $b \mid b \mid b \mid c \rightarrow_R$ $b a c c \rightarrow_R$ $b \boxed{a \ a} b \rightarrow_R$ $b b c b \rightarrow_R$ $a c c b \rightarrow_R$

• Is there an infinite derivation?

String Rewriting: Example $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces e.g. the derivation $b \ b \ a \ a \rightarrow_R$ $b \mid b \mid b \mid c \rightarrow_R$ $b \mid a \mid c \mid c \mid \to_R$ $b \boxed{a \ a} b \rightarrow_R$ $b b c b \rightarrow_R$ $a c c b \rightarrow_R$

- Is there an infinite derivation? No: Termination proof by a matrix interpretation. Yields exponential upper bound on dc_R .
- Open problem: polynomial upper bound?

1. $R = \{aa \rightarrow aba\}, \ \mathrm{dc}_R \in \Theta(n)$

- 1. $R = \{aa \rightarrow aba\}, \ \mathrm{dc}_R \in \Theta(n)$
- 2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$

- 1. $R = \{aa \rightarrow aba\}, \ \mathrm{dc}_R \in \Theta(n)$
- 2. $R = \{ab \rightarrow ba\}, \ \mathrm{dc}_R \in \Theta(n^2)$
- 3. $R = \{ab \rightarrow baa\}, \ \operatorname{dc}_{R} \in \Theta(2^{n})$

1. $R = \{aa \rightarrow aba\}, dc_R \in \Theta(n)$ 2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$ 3. $R = \{ab \rightarrow baa\}, dc_R \in \Theta(2^n)$ 4. $R = \{aabab \rightarrow aPb, aP \rightarrow PAa, aA \rightarrow Aa, bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$ dc_R not primitive recursive (Ackermann)

- 1. $R = \{aa \rightarrow aba\}, dc_R \in \Theta(n)$ 2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$ 3. $R = \{ab \rightarrow baa\}, dc_R \in \Theta(2^n)$ 4. $R = \{aabab \rightarrow aPb, aP \rightarrow PAa, aA \rightarrow Aa, bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$ dc_R not primitive recursive (Ackermann)
- 5. Etc. (string rewriting is computationally complete)

1.
$$R = \{aa \rightarrow aba\}, dc_R \in \Theta(n)$$

2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$
3. $R = \{ab \rightarrow baa\}, dc_R \in \Theta(2^n)$
4. $R = \{aabab \rightarrow aPb, aP \rightarrow PAa, aA \rightarrow Aa, bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$
dc_R not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

We can deduce some of these bounds automatically:

- 1. via match bounds
- 2. via upper triangular 3×3 matrix interpretations
- 3. via matrix interpretations

Research Program

Deduce upper bounds on the derivational complexity from a termination proof (for general term rewriting).

- primitive recursive [H] • Multiset path order:
- Lexicographic path order: multiple recursive [Weiermann]
- Knuth-Bendix order:

. . .

4-recursive [H] / 2-recursive [Lepper]

- Related work by Buchholz, Touzet, Weiermann, Moser,
- Match bounds: linear [Geser, H, Waldmann]
- Matrix interpretations:

exponential [H, Waldmann], polynomial in particular cases

Relative Termination

Let $S = \{ab \rightarrow baa\}, R = \{cb \rightarrow bbc\}.$ Consider *R*-steps in $R \cup S$ -derivations.

The interpretation $\Sigma \to (\mathbb{N} \to \mathbb{N})$ with

 $a \mapsto \lambda n.n \qquad b \mapsto \lambda n.n + 1 \qquad c \mapsto \lambda n.3n$

is constant for S and decreasing for R \Rightarrow number of R-steps is $2^{O(n)}$.

Relative Termination

Let $S = \{ab \rightarrow baa\}, R = \{cb \rightarrow bbc\}.$ Consider *R*-steps in $R \cup S$ -derivations.

The interpretation $\Sigma \to (\mathbb{N} \to \mathbb{N})$ with

 $a \mapsto \lambda n.n \qquad b \mapsto \lambda n.n + 1 \qquad c \mapsto \lambda n.3n$

is constant for S and decreasing for R \Rightarrow number of R-steps is $2^{O(n)}$.

Relative termination allows to remove rules successively ~>>

- Modular termination proofs
- Automatic methods for proving relative termination are incorporated in all state of the art termination provers.
- Annual termination competition [WST]

Relative Termination: Definition

System R is terminating relative to system Sif any $R \cup S$ -derivation contains only finitely many R-steps.

- Notation: SN(R/S)
- In other words: $\rightarrow^*_S \circ \rightarrow_R \circ \rightarrow^*_S$ is well-founded.

Relative Termination: Definition

System R is terminating relative to system Sif any $R \cup S$ -derivation contains only finitely many R-steps.

- Notation: SN(R/S)
- In other words: $\rightarrow^*_S \circ \rightarrow_R \circ \rightarrow^*_S$ is well-founded.

Basic fact:

SN(R/S) and SN(S) imply $SN(R \cup S)$

Expl: $\{aa \rightarrow aba\}$ is terminating relative to $\{b \rightarrow bb\}$.

The Problem

Let R and S be rewriting systems. Assume termination of $R \cup S$ has been shown by proving termination of R/S and termination of S.

• Give a bound on $dc_{R\cup S}$ in terms of $dc_{R/S}$ and dc_S .

Note: Proof methods for relative termination can handle situations where S is not terminating. Here we assume that S is terminating.

Basic Observation

Let $\Delta_R = \max\{|r| - |\ell| \mid (\ell \to r) \in R\}$, and assume (for simplicity) that this implies $\max\{|x| - |y| \mid x \to_R y\} \leq \Delta_R$.

• Note: $\Delta_R = 0$ in case R is not size-increasing.

Now consider an arbitrary finite derivation modulo $R \cup S$:

$$x_0 \to_S^* x'_0 \to_R x_1 \to_S^* x'_1 \to_R x_2 \to_S^* \cdots \to_S^* x'_{k-1} \to_R x_k \to_S^* x'_k$$

Define $\delta : \mathbb{N} \to \mathbb{N}$ by $\delta(n) = n + \Delta_S \cdot \operatorname{dc}_S(n) + \Delta_R$. Then $|x_{i+1}| \leq \delta(|x_i|).$

Monotonicity of dc_S implies monotonicity of δ , thus

$$|x_{i+1}| \le \delta^i(|x_0|).$$

Rewriting and Proof Theory, Obergurgl, 6. September 2006 -p.10/30

The General Upper Bound

$$x_0 \to_S^* x'_0 \to_R x_1 \to_S^* x'_1 \to_R x_2 \to_S^* \cdots \to_S^* x'_{k-1} \to_R x_k \to_S^* x'_k$$

... thus the length of the above derivation is bounded by

$$dc_{R\cup S}(|x_0|) \le dc_{R/S}(|x_0|) + \sum_{i=0}^k dc_S(|x_i|)$$
$$\le dc_{R/S}(|x_0|) + \sum_{i=0}^k dc_S\left(\delta^i(|x_0|)\right)$$

We have $\delta^{i+1}(n) \ge \delta^i(n)$ by $\delta(n) \ge n$. Since $k \le dc_{R/S}(|x_0|)$,

$$\mathrm{dc}_{R\cup S}(n) \in O\left(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}\left(\delta^{\mathrm{dc}_{R/S}(n)}(n)\right)\right)$$

• R and S not size-increasing: $\frac{\mathrm{dc}_{R\cup S}(n) \in O(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}(n))}{\mathrm{dc}_{S}(n) \cdot \mathrm{dc}_{S}(n)}$ $\delta(n) = n$

Multiplication

• R and S not size-increasing: $\delta(n) = n$ $dc_{R\cup S}(n) \in O(dc_{R/S}(n) \cdot dc_{S}(n))$ Multiplication

• S not size-increasing:

$$\delta(n) = n + \Delta_R, \text{ thus } \delta^i(n) = n + i \cdot \Delta_R$$

$$\boxed{\operatorname{dc}_{R \cup S}(n) \in O\left(\operatorname{dc}_{R/S}(n) \cdot \operatorname{dc}_S\left(n + \operatorname{dc}_{R/S}(n) \cdot \Delta_R\right)\right)}$$
Composition

• R and S not size-increasing: $\mathrm{dc}_{R\cup S}(n) \in O(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}(n))$ Multiplication • S not size-increasing: $\delta(n) = n + \Delta_R$, thus $\delta^i(n) = n + i \cdot \Delta_R$

 $\operatorname{dc}_{R\cup S}(n) \in O\left(\operatorname{dc}_{R/S}(n) \cdot \operatorname{dc}_{S}\left(n + \operatorname{dc}_{R/S}(n) \cdot \Delta_{R}\right)\right)$ Composition

• S size-increasing: $\delta \in \Theta(\mathrm{dc}_S)$ $\mathrm{dc}_{R\cup S}(n) \in O\big(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}^{\mathrm{dc}_{R/S}(n)+1}(n)\big)$ Iteration

Consequences

- Consider function classes with certain closure properties:
 - Closed under addition, multiplication, composition Example: polynomials
 - Closed under iteration Example: primitive recursive functions

Consequences

- Consider function classes with certain closure properties:
 - Closed under addition, multiplication, composition Example: polynomials
 - Closed under iteration Example: primitive recursive functions

Can this general bound be improved?
 No, as the following generic construction reveals.
 (For string rewriting, therefore can be done in every sufficiently rich rewriting model.)

The Lower Bound Result

The general upper bound can be attained, even for string rewriting. Proof:

Take arbitrary string rewriting systems R_0 over Σ , S_0 over Γ (w.l.o.g. disjoint alphabets) and add new letters σ , γ . Define

$$R = \{l \to r\sigma \mid (l \to r) \in R_0\}$$
 (introduce marker)

$$S = S_0 \cup \{\sigma a \to a\sigma \mid a \in \Sigma\}$$
 (move marker)

$$\cup \{\sigma \to \gamma\}$$
 (switch markers)

$$\cup \{\gamma b \to c\gamma \mid b, c \in \Gamma\}$$
 (nondeterministic reset)

We have
$$dc_{R_0} \approx dc_{R/S}$$
, $dc_{S_0} + \Theta(n^2) \approx dc_S$ and
 $dc_{R\cup S} = \Theta(\text{upper bound in terms of } dc_{R/S} \text{ and } dc_S).$
So the construction shows optimality if $dc_S \in \Omega(n^2)$.

Rewriting and Proof Theory, Obergurgl, 6. September 2006 -p.14/30

Example: Polynomial Upper Bound

 $B_k = \{ki \to jk \mid k > i, j\}$

 $R_d = B_2 \cup \cdots \cup B_d$

over alphabet $\{1, 2, ..., d\}$. The bound $dc_{R_d} \in \Theta(n^d)$ can be shown via some matrix interpretation of dimension d + 1.

Example: Polynomial Upper Bound

 $B_k = \{ki \to jk \mid k > i, j\}$

 $R_d = B_2 \cup \cdots \cup B_d$

over alphabet $\{1, 2, ..., d\}$. The bound $dc_{R_d} \in \Theta(n^d)$ can be shown via some matrix interpretation of dimension d + 1.

A simpler proof via relative termination:

- Show $\operatorname{SN}(B_d/R_{d-1})$ via the interpretation $\{1, \ldots, d-1\} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad d \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- $dc_{B_d/R_{d-1}} \in O(n^2)$ (matrices are upper triangular)
- B_d and R_{d-1} are size-preserving, so the upper bound result implies (by induction) $dc_{R_d} \in O(n^{2(d-1)})$.

Bound is overestimated, but nevertheless polynomial. Termination proof much easier to find.

• Can the general upper bound be reached for $dc_S \in O(n)$?

 Can the general upper bound be reached for dc_S ∈ O(n)? Yes for term rewriting:

$$R = \{ f(s(x), y, z) \to f(x, z, y) \mid x, y, z \ge 0 \}$$

$$S = \{ f(x, s(y), z) \to f(x, y, s(s(z))) \mid x, y, z \ge 0 \}$$

Here, $\operatorname{dc}_{R/S} \in O(n)$ and $\operatorname{dc}_{S} \in O(n)$, but $\operatorname{dc}_{R\cup S}$ is exponential: $f(s^{n}(0), 1, 0) \rightarrow^{*} f(0, 0, s^{2^{n}}(0))$.

 Can the general upper bound be reached for dc_S ∈ O(n)? Yes for term rewriting:

$$R = \{ f(s(x), y, z) \to f(x, z, y) \mid x, y, z \ge 0 \}$$

$$S = \{ f(x, s(y), z) \to f(x, y, s(s(z))) \mid x, y, z \ge 0 \}$$

Here, $\operatorname{dc}_{R/S} \in O(n)$ and $\operatorname{dc}_{S} \in O(n)$, but $\operatorname{dc}_{R\cup S}$ is exponential: $f(s^{n}(0), 1, 0) \rightarrow^{*} f(0, 0, s^{2^{n}}(0))$.

Remark: Similarly with binary symbol f.
 Open: How about unary symbols only,
 i.e. for string rewriting? Conjecture: no

• Can the general upper bound be reached for $dc_S \in O(n)$? Yes for term rewriting:

$$R = \{ f(s(x), y, z) \to f(x, z, y) \mid x, y, z \ge 0 \}$$

$$S = \{ f(x, s(y), z) \to f(x, y, s(s(z))) \mid x, y, z \ge 0 \}$$

Here, $\operatorname{dc}_{R/S} \in O(n)$ and $\operatorname{dc}_{S} \in O(n)$, but $\operatorname{dc}_{R\cup S}$ is exponential: $f(s^{n}(0), 1, 0) \rightarrow^{*} f(0, 0, s^{2^{n}}(0))$.

- Remark: Similarly with binary symbol f.
 Open: How about unary symbols only,
 i.e. for string rewriting? Conjecture: no
- Make the implicit notion of "abstract reduction system with size measure" explicit.

Reminder (after the talk)

Solving the above question: There are also string rewriting systems with $\operatorname{dc}_{R/S} \in O(n)$ and $\operatorname{dc}_S \in O(n)$, but $\operatorname{dc}_{R\cup S}$ exponential:

$$R = \{ c \lhd \rightarrow \triangleright \}$$
$$S = \{ \triangleright a \rightarrow bb \triangleright,$$
$$\triangleright \rightarrow \lhd,$$
$$b \lhd \rightarrow \lhd a \}$$

We have

$$c^n \triangleright a \to_{R \cup S}^* \triangleright a^{2^n}$$

(Note that S is match-bounded by 2.)

======

Derivational Complexity: Definition

The derivational complexity of a terminating (rewrite) relation \rightarrow on a set of terms T is a mapping $dc : \mathbb{N} \rightarrow \mathbb{N}$ with

 $dc_{\rightarrow}: n \mapsto \max\{m \mid \exists x, y \in T: |x| \le n \land x \to^m y\}$

where $|_|: T \to \mathbb{N}$ is an appropriate size measure.

- $\operatorname{dc}_{\to}(n+1) \ge \operatorname{dc}_{\to}(n)$
- $dc_{\rightarrow}(n) \in \Omega(n)$ for non-empty \rightarrow (uses "context")

Derivational Complexity: Definition

The derivational complexity of a terminating (rewrite) relation \rightarrow on a set of terms T is a mapping $dc : \mathbb{N} \rightarrow \mathbb{N}$ with

 $dc_{\rightarrow}: n \mapsto \max\{m \mid \exists x, y \in T: |x| \le n \land x \to^m y\}$

where $|_|: T \to \mathbb{N}$ is an appropriate size measure.

•
$$\operatorname{dc}_{\to}(n+1) \ge \operatorname{dc}_{\to}(n)$$

• $dc_{\rightarrow}(n) \in \Omega(n)$ for non-empty \rightarrow (uses "context")

Bridges to proof theory:

- Complexity bounds from termination proofs
- In general, dc_{\rightarrow} is an ordinal . . .

String Rewriting: Definitions

- Letter: element of a set Σ , the alphabet
- String: sequence of letters. Σ^* is the set of strings over Σ
- String rewriting system: set of rules of the form $\ell \to r$, i.e. a set $R \subseteq \Sigma^* \times \Sigma^*$
- Rewrite step: replace the left hand side of rule $\ell \to r$ by its right hand side: $x\ell y \to_R xry$ within context $x, y \in \Sigma^*$
- Derivation: chain of rewrite steps

String Rewriting: Definitions

- Letter: element of a set Σ , the alphabet
- String: sequence of letters. Σ^* is the set of strings over Σ
- String rewriting system: set of rules of the form $\ell \to r$, i.e. a set $R \subseteq \Sigma^* \times \Sigma^*$
- Rewrite step: replace the left hand side of rule $\ell \to r$ by its right hand side: $x\ell y \to_R xry$ within context $x, y \in \Sigma^*$
- Derivation: chain of rewrite steps

Why study string rewriting in this context?

• A particular case of more general computation models: term / higher-order / graph / ... / rewriting systems

String Rewriting: Example $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces e.g. the derivation $b \ b \ a \ a \rightarrow_R$ $b \mid b \mid b \mid c \rightarrow_R$ $b \mid a \mid c \mid c \mid \to_R$ $b \boxed{a \ a} b \rightarrow_R$ $b b c b \rightarrow_R$ $a c c b \rightarrow_R$

• Is there an infinite derivation?

String Rewriting: Example $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces e.g. the derivation $b \ b \ a \ a \rightarrow_R$ $b \mid b \mid b \mid c \rightarrow_R$ $b \mid a \mid c \mid c \mid \to_R$ $b \boxed{a \ a} b \rightarrow_R$ $b b c b \rightarrow_R$ $a c c b \rightarrow_R$

- Is there an infinite derivation? No: Termination proof by a matrix interpretation. Yields exponential upper bound on dc_R .
- Open problem: polynomial upper bound?

1. $R = \{aa \rightarrow aba\}, \ \mathrm{dc}_R \in \Theta(n)$

- 1. $R = \{aa \rightarrow aba\}, \ \mathrm{dc}_R \in \Theta(n)$
- 2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$

- 1. $R = \{aa \rightarrow aba\}, \ \mathrm{dc}_R \in \Theta(n)$
- 2. $R = \{ab \rightarrow ba\}, \ \mathrm{dc}_R \in \Theta(n^2)$
- 3. $R = \{ab \rightarrow baa\}, \ \operatorname{dc}_{R} \in \Theta(2^{n})$

1. $R = \{aa \rightarrow aba\}, dc_R \in \Theta(n)$ 2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$ 3. $R = \{ab \rightarrow baa\}, dc_R \in \Theta(2^n)$ 4. $R = \{aabab \rightarrow aPb, aP \rightarrow PAa, aA \rightarrow Aa, bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$ dc_R not primitive recursive (Ackermann)

- 1. $R = \{aa \rightarrow aba\}, dc_R \in \Theta(n)$ 2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$ 3. $R = \{ab \rightarrow baa\}, dc_R \in \Theta(2^n)$ 4. $R = \{aabab \rightarrow aPb, aP \rightarrow PAa, aA \rightarrow Aa, bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$ dc_R not primitive recursive (Ackermann)
- 5. Etc. (string rewriting is computationally complete)

1.
$$R = \{aa \rightarrow aba\}, dc_R \in \Theta(n)$$

2. $R = \{ab \rightarrow ba\}, dc_R \in \Theta(n^2)$
3. $R = \{ab \rightarrow baa\}, dc_R \in \Theta(2^n)$
4. $R = \{aabab \rightarrow aPb, aP \rightarrow PAa, aA \rightarrow Aa, bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$
dc_R not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

We can deduce some of these bounds automatically:

- 1. via match bounds
- 2. via upper triangular 3×3 matrix interpretations
- 3. via matrix interpretations

Research Program

Deduce upper bounds on the derivational complexity from a termination proof (for general term rewriting).

- primitive recursive [H] • Multiset path order:
- Lexicographic path order: multiple recursive [Weiermann]
- Knuth-Bendix order:

. . .

4-recursive [H] / 2-recursive [Lepper]

- Related work by Buchholz, Touzet, Weiermann, Moser,
- Match bounds: linear [Geser, H, Waldmann]
- Matrix interpretations:

exponential [H, Waldmann], polynomial in particular cases

Relative Termination

Let $S = \{ab \rightarrow baa\}, R = \{cb \rightarrow bbc\}.$ Consider *R*-steps in $R \cup S$ -derivations.

The interpretation $\Sigma \to (\mathbb{N} \to \mathbb{N})$ with

 $a \mapsto \lambda n.n \qquad b \mapsto \lambda n.n + 1 \qquad c \mapsto \lambda n.3n$

is constant for S and decreasing for R \Rightarrow number of R-steps is $2^{O(n)}$.

Relative Termination

Let $S = \{ab \rightarrow baa\}, R = \{cb \rightarrow bbc\}.$ Consider *R*-steps in $R \cup S$ -derivations.

The interpretation $\Sigma \to (\mathbb{N} \to \mathbb{N})$ with

 $a \mapsto \lambda n.n \qquad b \mapsto \lambda n.n + 1 \qquad c \mapsto \lambda n.3n$

is constant for S and decreasing for R \Rightarrow number of R-steps is $2^{O(n)}$.

Relative termination allows to remove rules successively ~>>

- Modular termination proofs
- Automatic methods for proving relative termination are incorporated in all state of the art termination provers.
- Annual termination competition [WST]

The Problem

Let R and S be rewriting systems. Assume termination of $R \cup S$ has been shown by proving termination of R/S and termination of S.

• Give a bound on $dc_{R\cup S}$ in terms of $dc_{R/S}$ and dc_S .

Note: Proof methods for relative termination can handle situations where S is not terminating. Here we assume that S is terminating.

Basic Observation

Let $\Delta_R = \max\{|r| - |\ell| \mid (\ell \to r) \in R\}$, and assume (for simplicity) that this implies $\max\{|x| - |y| \mid x \to_R y\} \leq \Delta_R$.

• Note: $\Delta_R = 0$ in case R is not size-increasing.

Now consider an arbitrary finite derivation modulo $R \cup S$:

$$x_0 \to_S^* x'_0 \to_R x_1 \to_S^* x'_1 \to_R x_2 \to_S^* \cdots \to_S^* x'_{k-1} \to_R x_k \to_S^* x'_k$$

Define $\delta : \mathbb{N} \to \mathbb{N}$ by $\delta(n) = n + \Delta_S \cdot \operatorname{dc}_S(n) + \Delta_R$. Then $|x_{i+1}| \leq \delta(|x_i|).$

Monotonicity of dc_S implies monotonicity of δ , thus

$$|x_{i+1}| \le \delta^i(|x_0|).$$

Rewriting and Proof Theory, Obergurgl, 6. September 2006 -p.25/30

The General Upper Bound

$$x_0 \to_S^* x'_0 \to_R x_1 \to_S^* x'_1 \to_R x_2 \to_S^* \cdots \to_S^* x'_{k-1} \to_R x_k \to_S^* x'_k$$

... thus the length of the above derivation is bounded by

$$dc_{R\cup S}(|x_0|) \le dc_{R/S}(|x_0|) + \sum_{i=0}^k dc_S(|x_i|)$$
$$\le dc_{R/S}(|x_0|) + \sum_{i=0}^k dc_S\left(\delta^i(|x_0|)\right)$$

We have $\delta^{i+1}(n) \ge \delta^i(n)$ by $\delta(n) \ge n$. Since $k \le dc_{R/S}(|x_0|)$,

$$\mathrm{dc}_{R\cup S}(n) \in O\left(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}\left(\delta^{\mathrm{dc}_{R/S}(n)}(n)\right)\right)$$

• R and S not size-increasing: $\frac{\mathrm{dc}_{R\cup S}(n) \in O(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}(n))}{\mathrm{dc}_{R\cup S}(n) \cdot \mathrm{dc}_{S}(n)}$ $\delta(n) = n$

Multiplication

• R and S not size-increasing: $\delta(n) = n$ $dc_{R\cup S}(n) \in O(dc_{R/S}(n) \cdot dc_{S}(n))$ Multiplication

• S not size-increasing:

$$\delta(n) = n + \Delta_R, \text{ thus } \delta^i(n) = n + i \cdot \Delta_R$$

$$\boxed{\operatorname{dc}_{R \cup S}(n) \in O\left(\operatorname{dc}_{R/S}(n) \cdot \operatorname{dc}_S\left(n + \operatorname{dc}_{R/S}(n) \cdot \Delta_R\right)\right)}$$
Composition

• R and S not size-increasing: $\mathrm{dc}_{R\cup S}(n) \in O(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}(n))$ Multiplication • S not size-increasing: $\delta(n) = n + \Delta_R$, thus $\delta^i(n) = n + i \cdot \Delta_R$

 $\operatorname{dc}_{R\cup S}(n) \in O\left(\operatorname{dc}_{R/S}(n) \cdot \operatorname{dc}_{S}\left(n + \operatorname{dc}_{R/S}(n) \cdot \Delta_{R}\right)\right)$ Composition

• S size-increasing: $\delta \in \Theta(\mathrm{dc}_S)$ $\mathrm{dc}_{R\cup S}(n) \in O\big(\mathrm{dc}_{R/S}(n) \cdot \mathrm{dc}_{S}^{\mathrm{dc}_{R/S}(n)+1}(n)\big)$ Iteration

Consequences

- Consider function classes with certain closure properties:
 - Closed under addition, multiplication, composition Example: polynomials
 - Closed under iteration Example: primitive recursive functions

Consequences

- Consider function classes with certain closure properties:
 - Closed under addition, multiplication, composition Example: polynomials
 - Closed under iteration Example: primitive recursive functions

Can this general bound be improved?
 No, as the following generic construction reveals.
 (For string rewriting, therefore can be done in every sufficiently rich rewriting model.)

The Lower Bound Result

The general upper bound can be attained, even for string rewriting. Proof:

Take arbitrary string rewriting systems R_0 over Σ , S_0 over Γ (w.l.o.g. disjoint alphabets) and add new letters σ , γ . Define

$$R = \{l \to r\sigma \mid (l \to r) \in R_0\}$$
 (introduce marker)

$$S = S_0 \cup \{\sigma a \to a\sigma \mid a \in \Sigma\}$$
 (move marker)

$$\cup \{\sigma \to \gamma\}$$
 (switch markers)

$$\cup \{\gamma b \to c\gamma \mid b, c \in \Gamma\}$$
 (nondeterministic reset)

We have
$$dc_{R_0} \approx dc_{R/S}$$
, $dc_{S_0} + \Theta(n^2) \approx dc_S$ and
 $dc_{R\cup S} = \Theta(\text{upper bound in terms of } dc_{R/S} \text{ and } dc_S).$
So the construction shows optimality if $dc_S \in \Omega(n^2)$.

Rewriting and Proof Theory, Obergurgl, 6. September 2006 -p.29/30

Example: Polynomial Upper Bound

 $B_k = \{ki \to jk \mid k > i, j\}$

 $R_d = B_2 \cup \cdots \cup B_d$

over alphabet $\{1, 2, ..., d\}$. The bound $dc_{R_d} \in \Theta(n^d)$ can be shown via some matrix interpretation of dimension d + 1.

Example: Polynomial Upper Bound

 $B_k = \{ki \to jk \mid k > i, j\}$

 $R_d = B_2 \cup \cdots \cup B_d$

over alphabet $\{1, 2, ..., d\}$. The bound $dc_{R_d} \in \Theta(n^d)$ can be shown via some matrix interpretation of dimension d + 1.

A simpler proof via relative termination:

- Show $\operatorname{SN}(B_d/R_{d-1})$ via the interpretation $\{1, \ldots, d-1\} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad d \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- $dc_{B_d/R_{d-1}} \in O(n^2)$ (matrices are upper triangular)
- B_d and R_{d-1} are size-preserving, so the upper bound result implies (by induction) $dc_{R_d} \in O(n^{2(d-1)})$.

Bound is overestimated, but nevertheless polynomial. Termination proof much easier to find.

