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Derivational Complexity: Definition

The derivational complexity of a terminating (rewrite)
relation → on a set of terms T is a mapping dc : N → N with

dc→ : n 7→ max{m | ∃x, y ∈ T : |x| ≤ n ∧ x →m y}

where | | : T → N is an appropriate size measure.

• dc→(n + 1) ≥ dc→(n)

• dc→(n) ∈ Ω(n) for non-empty → (uses“context”)
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Derivational Complexity: Definition

The derivational complexity of a terminating (rewrite)
relation → on a set of terms T is a mapping dc : N → N with

dc→ : n 7→ max{m | ∃x, y ∈ T : |x| ≤ n ∧ x →m y}

where | | : T → N is an appropriate size measure.

• dc→(n + 1) ≥ dc→(n)

• dc→(n) ∈ Ω(n) for non-empty → (uses“context”)

Bridges to proof theory:

• Complexity bounds from termination proofs . . .

• In general, dc→ is an ordinal . . .
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String Rewriting: Definitions

• Letter: element of a set Σ, the alphabet

• String: sequence of letters. Σ∗ is the set of strings over Σ

• String rewriting system: set of rules of the form ℓ → r,
i.e. a set R ⊆ Σ∗ × Σ∗

• Rewrite step: replace the left hand side of rule ℓ → r by
its right hand side: xℓy →R xry within context x, y ∈ Σ∗

• Derivation: chain of rewrite steps
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• Letter: element of a set Σ, the alphabet

• String: sequence of letters. Σ∗ is the set of strings over Σ

• String rewriting system: set of rules of the form ℓ → r,
i.e. a set R ⊆ Σ∗ × Σ∗

• Rewrite step: replace the left hand side of rule ℓ → r by
its right hand side: xℓy →R xry within context x, y ∈ Σ∗

• Derivation: chain of rewrite steps

Why study string rewriting in this context?

• A particular case of more general computation models:
term / higher-order / graph / . . . / rewriting systems
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String Rewriting: Example
R = {aa → bc, bb → ac, cc → ab} induces e.g. the derivation

b b a a →R

b b b c →R

b a c c →R

b a a b →R

b b c b →R

a c c b →R

a a b b →R · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• Is there an infinite derivation?
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String Rewriting: Example
R = {aa → bc, bb → ac, cc → ab} induces e.g. the derivation

b b a a →R

b b b c →R

b a c c →R

b a a b →R

b b c b →R

a c c b →R

a a b b →R · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• Is there an infinite derivation?
No: Termination proof by a matrix interpretation.
Yields exponential upper bound on dcR.

• Open problem: polynomial upper bound?
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String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

Rewriting and Proof Theory, Obergurgl, 6. September 2006 – p.5/30



String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

Rewriting and Proof Theory, Obergurgl, 6. September 2006 – p.5/30



String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

Rewriting and Proof Theory, Obergurgl, 6. September 2006 – p.5/30
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1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,
bP → bQ,QA → aQ,Qa → babaa}

dcR not primitive recursive (Ackermann)
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5. Etc. (string rewriting is computationally complete)
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2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,
bP → bQ,QA → aQ,Qa → babaa}

dcR not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

We can deduce some of these bounds automatically:

1. via match bounds

2. via upper triangular 3 × 3 matrix interpretations

3. via matrix interpretations
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Research Program
Deduce upper bounds on the derivational complexity
from a termination proof (for general term rewriting).

• Multiset path order: primitive recursive [H]

• Lexicographic path order: multiple recursive [Weiermann]

• Knuth-Bendix order:
4-recursive [H] / 2-recursive [Lepper]

• Related work by Buchholz, Touzet, Weiermann, Moser,
. . .

• Match bounds: linear [Geser, H, Waldmann]

• Matrix interpretations: exponential [H, Waldmann],
polynomial in particular cases
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Relative Termination
Let S = {ab → baa}, R = {cb → bbc}.
Consider R-steps in R ∪ S-derivations.

The interpretation Σ → (N → N) with

a 7→ λn.n b 7→ λn.n + 1 c 7→ λn.3n

is constant for S and decreasing for R

⇒ number of R-steps is 2O(n).
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Consider R-steps in R ∪ S-derivations.

The interpretation Σ → (N → N) with

a 7→ λn.n b 7→ λn.n + 1 c 7→ λn.3n

is constant for S and decreasing for R

⇒ number of R-steps is 2O(n).

Relative termination allows to remove rules successively  

• Modular termination proofs

• Automatic methods for proving relative termination are
incorporated in all state of the art termination provers.

•  Annual termination competition [WST]
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Relative Termination: Definition

System R is terminating relative to system S
if any R ∪ S-derivation contains only finitely many R-steps.

• Notation: SN(R/S)

• In other words: →∗

S ◦ →R ◦ →∗

S is well-founded.
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Relative Termination: Definition

System R is terminating relative to system S
if any R ∪ S-derivation contains only finitely many R-steps.

• Notation: SN(R/S)

• In other words: →∗

S ◦ →R ◦ →∗

S is well-founded.

Basic fact:

SN(R/S) and SN(S) imply SN(R ∪ S)

Expl: {aa → aba} is terminating relative to {b → bb}.
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The Problem

Let R and S be rewriting systems.
Assume termination of R ∪ S has been shown
by proving termination of R/S and termination of S.

• Give a bound on dcR∪S in terms of dcR/S and dcS.

Note: Proof methods for relative termination
can handle situations where S is not terminating.
Here we assume that S is terminating.
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Basic Observation
Let ∆R = max{|r| −̇ |ℓ| | (ℓ → r) ∈ R}, and assume (for
simplicity) that this implies max{|x| −̇ |y| | x →R y} ≤ ∆R.

• Note: ∆R = 0 in case R is not size-increasing.

Now consider an arbitrary finite derivation modulo R ∪ S:

x0 →∗

S x′

0 →R x1 →∗

S x′

1 →R x2 →∗

S · · · →∗

S x′

k−1 →R xk →∗

S x′

k

Define δ : N → N by δ(n) = n + ∆S · dcS(n) + ∆R. Then

|xi+1| ≤ δ(|xi|).

Monotonicity of dcS implies monotonicity of δ, thus

|xi+1| ≤ δi(|x0|).
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The General Upper Bound

x0 →∗

S x′

0 →R x1 →∗

S x′

1 →R x2 →∗

S · · · →∗

S x′

k−1 →R xk →∗

S x′

k

. . . thus the length of the above derivation is bounded by

dcR∪S(|x0|) ≤ dcR/S(|x0|) +
k

∑

i=0

dcS(|xi|)

≤ dcR/S(|x0|) +
k

∑

i=0

dcS

(

δi(|x0|)
)

We have δi+1(n) ≥ δi(n) by δ(n) ≥ n. Since k ≤ dcR/S(|x0|),

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

δdcR/S(n)(n)
)

)
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication

• S not size-increasing:
δ(n) = n + ∆R, thus δi(n) = n + i · ∆R

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n + dcR/S(n) · ∆R)
)

Composition
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication

• S not size-increasing:
δ(n) = n + ∆R, thus δi(n) = n + i · ∆R

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n + dcR/S(n) · ∆R)
)

Composition

• S size-increasing: δ ∈ Θ(dcS)

dcR∪S(n) ∈ O
(

dcR/S(n) · dc
dcR/S(n)+1
S (n)

)

Iteration
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Consequences

• Consider function classes with certain closure properties:
• Closed under addition, multiplication, composition

Example: polynomials

• Closed under iteration
Example: primitive recursive functions
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Consequences

• Consider function classes with certain closure properties:
• Closed under addition, multiplication, composition

Example: polynomials

• Closed under iteration
Example: primitive recursive functions

• Can this general bound be improved?
No, as the following generic construction reveals.
(For string rewriting, therefore can be done in every
sufficiently rich rewriting model.)
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The Lower Bound Result
The general upper bound can be attained,
even for string rewriting. Proof:

Take arbitrary string rewriting systems R0 over Σ, S0 over Γ
(w.l.o.g. disjoint alphabets) and add new letters σ, γ. Define

R = {l → rσ | (l → r) ∈ R0} (introduce marker)

S = S0 ∪ {σa → aσ | a ∈ Σ} (move marker)

∪ {σ → γ} (switch markers)

∪ {γb → cγ | b, c ∈ Γ} (nondeterministic reset)

We have dcR0
≈ dcR/S , dcS0

+Θ(n2) ≈ dcS and

dcR∪S = Θ(upper bound in terms of dcR/S and dcS).

So the construction shows optimality if dcS ∈ Ω(n2).
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Example: Polynomial Upper Bound
Bk = {ki → jk | k > i, j}

Rd = B2 ∪ · · · ∪ Bd

over alphabet {1, 2, . . . , d}. The bound dcRd
∈ Θ(nd) can be

shown via some matrix interpretation of dimension d + 1.
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Example: Polynomial Upper Bound
Bk = {ki → jk | k > i, j}

Rd = B2 ∪ · · · ∪ Bd

over alphabet {1, 2, . . . , d}. The bound dcRd
∈ Θ(nd) can be

shown via some matrix interpretation of dimension d + 1.

A simpler proof via relative termination:

• Show SN(Bd/Rd−1) via the interpretation

{1, . . . , d − 1} 7→
(

1 0 0
0 1 1
0 0 1

)

, d 7→
(

1 1 0
0 1 0
0 0 1

)

• dcBd/Rd−1
∈ O(n2) (matrices are upper triangular)

• Bd and Rd−1 are size-preserving, so the upper bound

result implies (by induction) dcRd
∈ O(n2(d−1)) .

Bound is overestimated, but nevertheless polynomial.
Termination proof much easier to find.
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Discussion
• Can the general upper bound be reached for

dcS ∈ O(n)?
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Discussion
• Can the general upper bound be reached for

dcS ∈ O(n)? Yes for term rewriting:

R = {f(s(x), y, z) → f(x, z, y) | x, y, z ≥ 0}

S = {f(x, s(y), z) → f(x, y, s(s(z))) | x, y, z ≥ 0}

Here, dcR/S ∈ O(n) and dcS ∈ O(n), but dcR∪S is

exponential: f(sn(0), 1, 0) →∗ f(0, 0, s2n

(0)).
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Here, dcR/S ∈ O(n) and dcS ∈ O(n), but dcR∪S is

exponential: f(sn(0), 1, 0) →∗ f(0, 0, s2n

(0)).

• Remark: Similarly with binary symbol f .
Open: How about unary symbols only,
i.e. for string rewriting? Conjecture: no
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Discussion
• Can the general upper bound be reached for

dcS ∈ O(n)? Yes for term rewriting:

R = {f(s(x), y, z) → f(x, z, y) | x, y, z ≥ 0}

S = {f(x, s(y), z) → f(x, y, s(s(z))) | x, y, z ≥ 0}

Here, dcR/S ∈ O(n) and dcS ∈ O(n), but dcR∪S is

exponential: f(sn(0), 1, 0) →∗ f(0, 0, s2n

(0)).

• Remark: Similarly with binary symbol f .
Open: How about unary symbols only,
i.e. for string rewriting? Conjecture: no

• Make the implicit notion of“abstract reduction system
with size measure”explicit.
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Reminder (after the talk)
Solving the above question:
There are also string rewriting systems
with dcR/S ∈ O(n) and dcS ∈ O(n), but dcR∪S exponential:

R = {c⊳→ ⊲}

S = {⊲a → bb⊲,

⊲→ ⊳,

b⊳→ ⊳a}

We have
cn
⊲a →∗

R∪S ⊲a2n

(Note that S is match-bounded by 2.)
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Derivational Complexity: Definition

The derivational complexity of a terminating (rewrite)
relation → on a set of terms T is a mapping dc : N → N with

dc→ : n 7→ max{m | ∃x, y ∈ T : |x| ≤ n ∧ x →m y}

where | | : T → N is an appropriate size measure.

• dc→(n + 1) ≥ dc→(n)

• dc→(n) ∈ Ω(n) for non-empty → (uses“context”)
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String Rewriting: Definitions

• Letter: element of a set Σ, the alphabet

• String: sequence of letters. Σ∗ is the set of strings over Σ

• String rewriting system: set of rules of the form ℓ → r,
i.e. a set R ⊆ Σ∗ × Σ∗

• Rewrite step: replace the left hand side of rule ℓ → r by
its right hand side: xℓy →R xry within context x, y ∈ Σ∗

• Derivation: chain of rewrite steps
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String Rewriting: Example
R = {aa → bc, bb → ac, cc → ab} induces e.g. the derivation

b b a a →R

b b b c →R

b a c c →R

b a a b →R

b b c b →R

a c c b →R

a a b b →R · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• Is there an infinite derivation?
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String Rewriting: Examples
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dcR not primitive recursive (Ackermann)
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Research Program
Deduce upper bounds on the derivational complexity
from a termination proof (for general term rewriting).

• Multiset path order: primitive recursive [H]

• Lexicographic path order: multiple recursive [Weiermann]

• Knuth-Bendix order:
4-recursive [H] / 2-recursive [Lepper]

• Related work by Buchholz, Touzet, Weiermann, Moser,
. . .

• Match bounds: linear [Geser, H, Waldmann]

• Matrix interpretations: exponential [H, Waldmann],
polynomial in particular cases
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Relative Termination
Let S = {ab → baa}, R = {cb → bbc}.
Consider R-steps in R ∪ S-derivations.

The interpretation Σ → (N → N) with

a 7→ λn.n b 7→ λn.n + 1 c 7→ λn.3n

is constant for S and decreasing for R

⇒ number of R-steps is 2O(n).

Rewriting and Proof Theory, Obergurgl, 6. September 2006 – p.23/30



Relative Termination
Let S = {ab → baa}, R = {cb → bbc}.
Consider R-steps in R ∪ S-derivations.

The interpretation Σ → (N → N) with

a 7→ λn.n b 7→ λn.n + 1 c 7→ λn.3n

is constant for S and decreasing for R
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The Problem

Let R and S be rewriting systems.
Assume termination of R ∪ S has been shown
by proving termination of R/S and termination of S.

• Give a bound on dcR∪S in terms of dcR/S and dcS.

Note: Proof methods for relative termination
can handle situations where S is not terminating.
Here we assume that S is terminating.
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Basic Observation
Let ∆R = max{|r| −̇ |ℓ| | (ℓ → r) ∈ R}, and assume (for
simplicity) that this implies max{|x| −̇ |y| | x →R y} ≤ ∆R.

• Note: ∆R = 0 in case R is not size-increasing.

Now consider an arbitrary finite derivation modulo R ∪ S:

x0 →∗

S x′

0 →R x1 →∗

S x′

1 →R x2 →∗

S · · · →∗

S x′

k−1 →R xk →∗

S x′

k

Define δ : N → N by δ(n) = n + ∆S · dcS(n) + ∆R. Then

|xi+1| ≤ δ(|xi|).

Monotonicity of dcS implies monotonicity of δ, thus

|xi+1| ≤ δi(|x0|).
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The General Upper Bound

x0 →∗

S x′

0 →R x1 →∗

S x′

1 →R x2 →∗

S · · · →∗

S x′

k−1 →R xk →∗

S x′

k

. . . thus the length of the above derivation is bounded by

dcR∪S(|x0|) ≤ dcR/S(|x0|) +
k

∑

i=0

dcS(|xi|)

≤ dcR/S(|x0|) +
k

∑

i=0

dcS

(

δi(|x0|)
)

We have δi+1(n) ≥ δi(n) by δ(n) ≥ n. Since k ≤ dcR/S(|x0|),

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

δdcR/S(n)(n)
)

)
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication

• S not size-increasing:
δ(n) = n + ∆R, thus δi(n) = n + i · ∆R

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n + dcR/S(n) · ∆R)
)

Composition
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication

• S not size-increasing:
δ(n) = n + ∆R, thus δi(n) = n + i · ∆R

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n + dcR/S(n) · ∆R)
)

Composition

• S size-increasing: δ ∈ Θ(dcS)

dcR∪S(n) ∈ O
(

dcR/S(n) · dc
dcR/S(n)+1
S (n)

)

Iteration
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Consequences

• Consider function classes with certain closure properties:
• Closed under addition, multiplication, composition

Example: polynomials

• Closed under iteration
Example: primitive recursive functions
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Consequences

• Consider function classes with certain closure properties:
• Closed under addition, multiplication, composition

Example: polynomials

• Closed under iteration
Example: primitive recursive functions

• Can this general bound be improved?
No, as the following generic construction reveals.
(For string rewriting, therefore can be done in every
sufficiently rich rewriting model.)
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The Lower Bound Result
The general upper bound can be attained,
even for string rewriting. Proof:

Take arbitrary string rewriting systems R0 over Σ, S0 over Γ
(w.l.o.g. disjoint alphabets) and add new letters σ, γ. Define

R = {l → rσ | (l → r) ∈ R0} (introduce marker)

S = S0 ∪ {σa → aσ | a ∈ Σ} (move marker)

∪ {σ → γ} (switch markers)

∪ {γb → cγ | b, c ∈ Γ} (nondeterministic reset)

We have dcR0
≈ dcR/S , dcS0

+Θ(n2) ≈ dcS and

dcR∪S = Θ(upper bound in terms of dcR/S and dcS).

So the construction shows optimality if dcS ∈ Ω(n2).
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Example: Polynomial Upper Bound
Bk = {ki → jk | k > i, j}

Rd = B2 ∪ · · · ∪ Bd

over alphabet {1, 2, . . . , d}. The bound dcRd
∈ Θ(nd) can be

shown via some matrix interpretation of dimension d + 1.
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Example: Polynomial Upper Bound
Bk = {ki → jk | k > i, j}

Rd = B2 ∪ · · · ∪ Bd

over alphabet {1, 2, . . . , d}. The bound dcRd
∈ Θ(nd) can be

shown via some matrix interpretation of dimension d + 1.

A simpler proof via relative termination:

• Show SN(Bd/Rd−1) via the interpretation

{1, . . . , d − 1} 7→
(

1 0 0
0 1 1
0 0 1

)

, d 7→
(

1 1 0
0 1 0
0 0 1

)

• dcBd/Rd−1
∈ O(n2) (matrices are upper triangular)

• Bd and Rd−1 are size-preserving, so the upper bound

result implies (by induction) dcRd
∈ O(n2(d−1)) .

Bound is overestimated, but nevertheless polynomial.
Termination proof much easier to find.
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