Automatic Certification of Polynomial Derivation Lengths in String Rewriting

Johannes Waldmann, HTWK Leipzig

Rewriting and Proof Theory, Obergurgl, September 2006 – p.1/16

String Rewriting

- string rewriting system R is set of rules
- rule = pair of strings
- apply a rule (l, r) to a string u: split $u = x \cdot l \cdot y$, obtain $x \cdot r \cdot y = v$
- one-step rewrite relation $u \rightarrow_R v$

example: $R = \{ab \rightarrow ba\},\ a\underline{abb} \rightarrow_R a\underline{b}\underline{ab} \rightarrow_R \underline{abb} \rightarrow_R \underline{b}\underline{ab} \rightarrow_R b\underline{b}aa \rightarrow_R bbaa$ (cf. bubble sort)

Derivational Complexity

For a terminating rewrite system R, how long can \rightarrow_R -derivations be, as a function of the length of the start word?

$$dc_{\rightarrow}(s) = \max\{k \mid |u| \le s, \exists v : u \to_R^k v\}$$

Examples:

- linear: $a \rightarrow b$
- quadratic: $ab \rightarrow ba$ (bubblesort)

Transformations

definition of dc_{\rightarrow} works for any relation \rightarrow on a domain D with a size function $|\cdot|: D \rightarrow \mathbb{N}$.

- order-preserving mapping
 - $f: (D, >_D) \to (E, >_E)$ $x >_D y \Rightarrow f(x) >_E f(y)$
- then $\forall s : dc_D(s) \le dc_E(f^{\parallel}(s))$ where $f^{\parallel}(s) = \max\{|f(x)|_E \mid |x|_D \le s\}$

Example: $D = \Sigma^*, >_D = \rightarrow_R, E = \mathbb{N}, >_E = >$ for $\Sigma = \{a, b\}, R = \{a \rightarrow b\},$ take $f(w) = |w|_a$, then $f^{\parallel}(s) = s$.

Algebras

- transformation $f:\Sigma^*\to E$ given by actions of letters $\Sigma\to (E\to E)$
- interpretation $[\cdot]$ maps empty word ϵ to $[\epsilon] \in E$ and each letter $a \in \Sigma$ to function $[a] : E \to E$,

• then
$$[a_1a_2...a_n] = [a_1][a_2]...[a_n][\epsilon]$$

- e. g. $|w|_a$ (number of letters) given by $[\epsilon] = 0, [a] = x \mapsto x + 1, [b] = x \mapsto x$
- these are linear mappings... represent as matrices

Matrix Interpretations

 $E = \{v \mid v \in \mathbb{N}^d, v_d \ge 1\} \text{ (as column vectors)} \\ x >_E y \iff x_1 > y_1 \land x_2 \ge y_2 \land \ldots \land x_n \ge y_n \\ \text{interpret letter } a \text{ by matrix } [a] \in \mathbb{N}^{d \times d} \text{ with} \\ [a]_{1,1} \ge 1 \land [a]_{d,d} \ge 1 \\ \text{empty word by } (0, \ldots, 0, 1)^T \\ \text{interpretation is compatible with } R \text{ if} \end{cases}$

$$\forall (l \to r) \in R : ([l]_{1,d} > [r]_{1,d} \land \forall i,j : [l]_{i,j} \ge [r]_{i,j})$$

Then $[\cdot]$ is order-preserving from \rightarrow_R to $>_E$. Thus $\operatorname{dc}_R(s) \leq \sup\{[w]_{1,d} : |w| \leq [s]^{\parallel}\}$

Example

$$R = \{ab \to ba\}, a \mapsto \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, b \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$[a] \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} 2x \\ 1 \end{pmatrix}, [b] \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} x+1 \\ 1 \end{pmatrix}.$$
$$[ab] = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}, [ba] = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
$$[aa\underline{ab}] = \begin{pmatrix} 8 & 8 \\ 0 & 1 \end{pmatrix}, [aa\underline{ba}] = \begin{pmatrix} 8 & 4 \\ 0 & 1 \end{pmatrix}$$

Tight bounds

For $R = \{ab \rightarrow ba\}$, previous interpretation $[\cdot]$ is compatible, but not tight:

$$[a^k b] = \begin{pmatrix} 2^k & 2^k \\ 0 & 1 \end{pmatrix} \text{ but } dc_{\rightarrow_R}(a^k b) = k$$

"better" interpretation:

$$\begin{split} & [a](x,y,1) = (x+y,y,1), [b](x,y,1) = (x,y+1,1) \\ & [ab](x,y,1) = (x+y+1,y+1,1), \\ & [ba](x,y,1) = (x+y , y+1,1). \\ & \text{this interpretation is quadratically bounded,} \\ & [w]_{1,2} \leq [a^{|w|}]_{1,2} = \sum \{k \mid 1 \leq k \leq |w|\} = \Theta(|w|^2) \end{split}$$

Upper triangular form

 $m \in \mathbb{N}^{d \times d}$ is upper triangular if $\forall i, j : (i > j \Rightarrow m_{i,j} = 0) \land (i = j \Rightarrow m_{i,j} \in \{0, 1\})$ Example (previous slide):

$$a \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, b \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Let $[\cdot] : \Sigma \to U$. Then

 $(n \mapsto \max\{[w]_{i,j} \mid w \in \Sigma^n\}) \in O(n^{j-j}).$ upper triangular interpretation gives polynomial bound on derivational complexity

Polynomial Derivations

 R_d over $\Sigma = \{1, 2, \ldots, d\}$ with rules

$$\{ki \to jk \mid i < k \land j < k\}$$

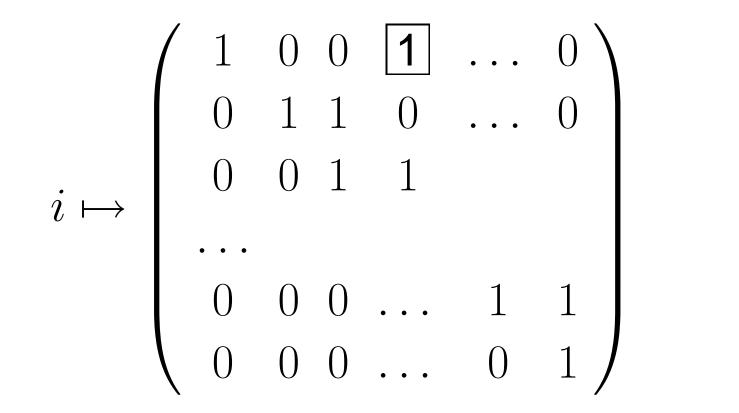
E.g. $R_2 = \{21 \rightarrow 12\}, R_3 = \{21 \rightarrow 12, 31 \rightarrow 12\}$ $13, 31 \rightarrow 21, 32 \rightarrow 13, 32 \rightarrow 23$ Derivation with $\approx n^d$ steps:

$$w = d^{n}(d-1)^{n} \dots 1^{n} \to^{*} \{1, 2, \dots, d\}^{n^{2}}$$

Bound for derivation lengths: letter k at position p(counting from right end) gets weight $\binom{p}{k-1}$. Total weight is $\leq |w|^d$. Rewriting and Proof Theory, Obergurgl, September 2006 – p.10/16

Upper Triangular Form: Example

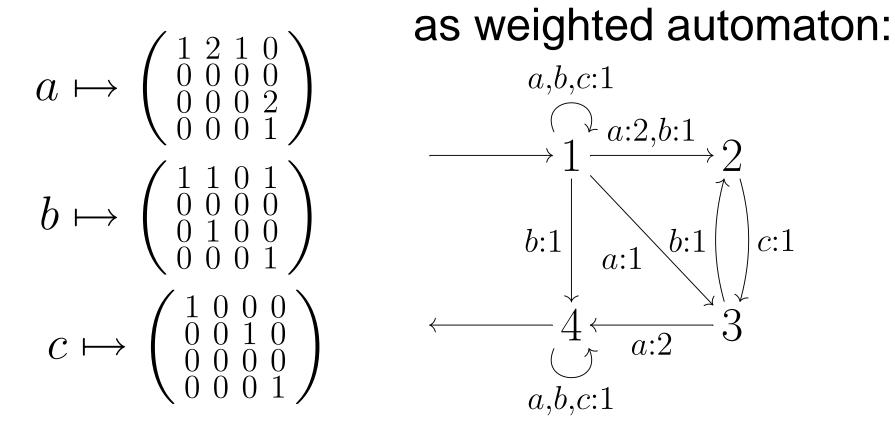
Interpretation for $R_d = \{ki \rightarrow jk \mid i < k \land j < k\}$:



in first row, entry 1 at positions 1 and d + 1 - i.

Other Matrix Forms

there are matrix interpretations with polynomial growth but not of upper triangular form. Example:



Is N-Automaton polynomial?

- 1. compute strongly connected components A_1, \ldots, A_k of underlying graph.
- 2. if there is any arrow with weight > 1 inside one component, then growth is exponential.
- 3. from each component A_i , construct a (classical) automaton (incoming arrow \Rightarrow initial state, outgoing arrow \Rightarrow final state)
- 4. if any A_i is ambiguous, then A is exponential.
- 5. Otherwise, A has polynomial growth.
- 6. degree is < maximal number of nontrivial SCCs on a chain of SCCs.

Symbolic Computation

- find compatible matrix interpretation by constructing a constraint system (inequalities for matrix entries)
- ensure polynomial growth by additional symbolic constraints
- solve by further translation to SAT

Symbolic Computation (II)

for interpretation $[\cdot]$, introduce growth vector with entries g_k denoting polynomials, for each letter $a \in \Sigma$, check that

$$g_i(n+1) \le \sum [a]_{i,j} g_j(n).$$

- (finite constraint system if max. degree is given)
- optimization: instead of full polynomial, consider only degree and leading coefficient.

Summary, Discussion

- upper triangular form ensures polynomial growth, but does not cover all cases
- weighted automata method can decide polynomial growth of matrix interpretation
- symbolic constraint system helps find matrix interpretation with polynomial growth

open problem:

• is
$$\{a^2 \rightarrow bc, b^2 \rightarrow ac, c^2 \rightarrow ab\}$$
 polynomial?

- it is at least quadratic: $\underline{cc} \underline{aa} \rightarrow^2 \underline{abb} c \rightarrow aacc$
- our 5×5 matrix interpretation is exponential

Rewriting and Proof Theory, Obergurgl, September 2006 - p.16/16