Termination of String Rewriting with Matrix Interpretations Method and Implementations

Dieter Hofbauer, Kassel Johannes Waldmann, Leipzig

String Rewriting

Why study string rewriting?

• Oriented equations

 \rightsquigarrow (semi-) group theory

- Universal computation model
 ~> recursion / complexity theory
- Model for non-deterministic processes
- Prototype for more general rewriting systems: term / higher-order / graph / ...

String Rewriting: Definitions

- Letter: element of a set Σ , the alphabet
- String: sequence of letters. Σ^* is the set of strings over Σ
- String rewriting system: set of rules of the form $\ell \to r$, i.e. a set $R \subseteq \Sigma^* \times \Sigma^*$
- Rewrite step: replace the left hand side of rule $\ell \to r$ by its right hand side: $x\ell y \to_R xry$ within context $x, y \in \Sigma^*$
- Derivation: chain of rewrite steps

String Rewriting: Example

 $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces derivation

$$b \ b \ a \ a \ \rightarrow_R$$

$$b \ b \ b \ c \ \rightarrow_R$$

$$b \ a \ c \ c \ \rightarrow_R$$

$$b \ a \ b \ \rightarrow_R$$

$$b \ b \ c \ b \ \rightarrow_R$$

$$a \ c \ c \ b \ \rightarrow_R$$

$$a \ b \ b \ \rightarrow_R$$

Is there an infinite derivation?

No: Termination proof by a matrix interpretation. Exponential upper bound on dc_R . Open problem: polytime upper bound?

.

Termination

Why study termination? Well

Definition: System R is terminating if any R-derivation contains only finitely many steps.

- Notation SN(R): R is strongly normalizing
- In other words: \rightarrow_R is well-founded.

Expl.s of terminating systems:

- $\{aab \rightarrow ba\}$
- $\{ab \rightarrow ba\}$
- $\{ab \rightarrow baa\}$
- $\{aa \rightarrow aba\}$

Zantema's System $\{aabb \rightarrow bbbaaa\}$

A test case for automated termination methods (z001).

- This interpretation proves termination since all entries are ≥ 0 and marked entries are ≥ 1
- Found automatically / Underlying theory elementary / Fast verification

Relative Termination

allows to remove rules successively \rightsquigarrow Modular termination proofs

Definition: System R is terminating relative to system S if any $R \cup S$ -derivation contains only finitely many R-steps.

- Notation: SN(R/S)
- In other words: $\rightarrow^*_S \circ \rightarrow_R \circ \rightarrow^*_S$ is well-founded.

SN(R/S) and SN(S) imply $SN(R \cup S)$

Expl: $\{aa \rightarrow aba\}$ is terminating relative to $\{b \rightarrow bb\}$.

Termination via Interpretations

Interpretations as order preserving mappings into well-founded domains:

- Let R and S be rewriting systems over Σ^* .
- Let (N, \geq) be a well-founded partial order.

If a mapping $i: \Sigma^* \to N$ is order preserving both

- from $(\Sigma^*, \longrightarrow_{I\!\!R})$ to (N, >) and
- from $(\Sigma^*, \longrightarrow_{S})$ to (N, \ge) ,

then R is terminating relative to S.

Ring Interpretations

Interpret the free monoid of strings in a ring:

- concatenation of factors → multiplication
- replacement of factors \mapsto substraction

Ring Interpretations

Interpret the free monoid of strings in a ring:

- concatenation of factors \mapsto multiplication
- replacement of factors → substraction

For termination: Use an (infinite) ordered ring, which is well-founded (on its "positive cone").

 Expl: (Z, 0, 1, +, ·) works for {aab → ba}, but doesn't work for {ab → ba} as multiplication is commutative.

→ Use a non-commutative ring , e.g., a matrix ring

Well-founded Rings

A partially ordered ring $(D, 0, 1, +, \cdot, \geq)$:

- (D,0,+) an Abelian group, $(D,1,\cdot)$ a monoid.
- Multiplication distributes over addition from both sides. (Multiplication not necessarily commutative / invertible.)
- \geq is a compatible partial order:

$$a \ge b \Rightarrow a + c \ge b + c$$
$$a \ge b \land c \ge 0 \Rightarrow a \cdot c \ge b \cdot c \land c \cdot a \ge c \cdot b$$

Its positive cone: $N = \{d \in D \mid d \ge 0\},\$ its strictly positive cone: $P = N \setminus \{0\} = \{d \in D \mid d > 0\}.$ The ring is well-founded if > is well-founded on N.

- Note: The order is uniquely determined by these cones: $a \ge b$ iff $a - b \in N$ and a > b iff $a - b \in P$.
- Note: $N \cdot N \subseteq N$, but $P \cdot P \not\subseteq P$ if zero divisors exist.

Ring Interpretations (cont'd)

A ring interpretation of alphabet Σ is a mapping $i: \Sigma \to D$

• extended to a mapping $i: \Sigma^* \to D$ on strings by

$$i(s_1 \cdot \ldots \cdot s_n) = i(s_1) \cdot \ldots \cdot i(s_n)$$

• extend to a mapping $i: \Sigma^* \times \Sigma^* \to D$ on rules by

$$i(\ell \to r) = i(\ell) - i(r)$$

Termination via Ring Interpretations

Apply ring interpretations for proving termination: Ensure $i(x\ell y) > i(xry)$ for each step $x\ell y \rightarrow_R xry$, i.e.,

$$i(x\ell y) - i(xry) = i(x)i(\ell)i(y) - i(x)i(r)i(y)$$
$$= \boxed{i(x)(i(\ell) - i(r))i(y) \in P} \qquad (*)$$

Given the set of interpretations of letters $i(\Sigma) = A$, what is the set of admissible interpretations of rules i(R) = B?

Termination via Ring Interpretations

Apply ring interpretations for proving termination: Ensure $i(x\ell y) > i(xry)$ for each step $x\ell y \rightarrow_R xry$, i.e.,

$$i(x\ell y) - i(xry) = i(x)i(\ell)i(y) - i(x)i(r)i(y)$$
$$= \boxed{i(x)(i(\ell) - i(r))i(y) \in P} \qquad (*)$$

Given the set of interpretations of letters $i(\Sigma) = A$, what is the set of admissible interpretations of rules i(R) = B? From (*) it is obvious that $A^*BA^* \subseteq P$ is necessary. The largest such set B is

$$\operatorname{core}(A) = \{ d \in D \mid A^* dA^* \subseteq P \}$$

Example: For $A = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \}$ we get $core(A) = \{ d \mid d \ge \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \}$.

Core Facts

 Increasing the range of interpretations of letters typically reduces the set that can safely be chosen as interpretations of rules:

If
$$A_1 \subseteq A_2$$
, then $\operatorname{core}(A_1) \supseteq \operatorname{core}(A_2)$

• The range of all interpretations is upward closed: W.I.o.g. for the interpretation of letters by

$$\operatorname{core}(A+N) = \operatorname{core}(A)$$

and for the interpretation of rules by

$$\operatorname{core}(A) + N = \operatorname{core}(A)$$

Termination via Interpretations (cont'd)

Let R be a string rewriting system over Σ . An interpretation $i: \Sigma \to N$ into a p.o.-ring is order preserving

• from $(\Sigma^*, \rightarrow_R)$ to (D, >) iff $i(\mathbb{R}) \subseteq \operatorname{core}(i(\Sigma))$

Definition: Let A be a subset of the positive cone of a well-founded ring. Then $i: \Sigma \to A$ is an A-interpretation for R if

 $i(\mathbf{R}) \subseteq \operatorname{core}(\mathbf{A})$

Theorem:

• If there is an A-interpretation for R, then R is terminating.

Termination via Interpretations (cont'd)

Let R, S be string rewriting systems over Σ . An interpretation $i: \Sigma \to N$ into a p.o.-ring is order preserving

- from $(\Sigma^*, \rightarrow_R)$ to (D, >) iff $i(\mathbb{R}) \subseteq \operatorname{core}(i(\Sigma))$
- from $(\Sigma^*, \rightarrow_S)$ to (D, \geq) iff $i(S) \subseteq N$

Definition: Let A be a subset of the positive cone of a well-founded ring. Then $i: \Sigma \to A$ is an A-interpretation for R if

 $i(R) \subseteq \operatorname{core}(A)$

Theorem:

 If there is an A-interpretation i for R with i(S) ⊆ N, then R is terminating relative to S.

Matrix Interpretations

Consider the p.o. ring of square matrices of a fixed dimension n over the integers: $D = \mathbb{Z}^{n \times n}$

- Addition / multiplication as usual.
- 0 and 1 are the zero and the identity matrix resp.
- The order is defined component-wise: $d \ge e$ if $\forall i, j : d_{i,j} \ge e_{i,j}$.
- The positive cone is $N = \mathbb{N}^{n \times n}$, and $P = N \setminus \{0\}$.
- The p.o. is well-founded on the positive cone.
- For n > 1, the p.o. is not total.

In order to apply the previous theorem we need a set of matrices $A \subseteq N$ with non-empty core(A).

Matrix Classes

Two particular instances of the above method:

- Choose $A = M_I$ with $\operatorname{core}(A) = M_I$.
- Choose $A = E_I$ with $\operatorname{core}(A) = P_I$.

All these are simple "syntactically" defined subsets of N, parameterized by a set of matrix indices $I \subseteq \{1, \ldots, n\}$:

$$M_{I} = \{ d \in N \mid \forall i \in I \exists j \in I : d_{i,j} > 0 \}$$
$$E_{I} = M_{I} \cap M_{I}^{\mathrm{T}}$$
$$P_{I} = \{ d \in N \mid \exists i \in I \exists j \in I : d_{i,j} > 0 \}$$

Consider only entries $d_{i,j}$ with $i, j \in I$:

- M_I : no zero row
- E_I : no zero row, no zero column

Example: $\{aa \rightarrow aba\}/\{b \rightarrow bb\}$ $i(a) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad i(b) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

is an E_1 -interpretation with $i(aa \rightarrow aba) = i(aa) - i(aba) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in P_1$ and $i(b \rightarrow bb) = i(b) - i(bb) = 0 \in N$. **Example:** $\{aa \rightarrow aba\}/\{b \rightarrow bb\}$ $i(a) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ $i(b) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

is an E_1 -interpretation with $i(aa \rightarrow aba) = i(aa) - i(aba) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in P_1$ and $i(b \rightarrow bb) = i(b) - i(bb) = 0 \in N$.

Alternatively, use the M_2 -interpretation

$$i(a) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad i(b) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

with $i(aa \rightarrow aba) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in M_2$ and $i(b \rightarrow bb) = 0$. (This interpretation is not E_I for any I.)

Example: $\{aabb \rightarrow bbbaaa\}$

$$a \mapsto \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad b \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$(\ell \to r) \mapsto \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 4 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

This is an $E_{\{1,5\}}$ -interpretation.

Example: Linear Interpretations

All termination proofs by additive natural weights can be expressed as matrix interpretations:
 (ℕ, +) is isomorphic to ({(1 n) | n ∈ ℕ}, ·) since

$$\left(\begin{smallmatrix}1&m\\0&1\end{smallmatrix}\right)\cdot\left(\begin{smallmatrix}1&n\\0&1\end{smallmatrix}\right)=\left(\begin{smallmatrix}1&m+n\\0&1\end{smallmatrix}\right)$$

- More general: Linear interpretations
 - Interpret letters by functions $\lambda n.an + b$ on \mathbb{N} with $a, b \in \mathbb{N}$ and $a \ge 1$,
 - concatenation is interpreted by function composition,
 - proof obligation is $\forall n : i(\ell)(n) > i(r)(n)$.

This corresponds to matrix interpretations with matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$.

A Normal Form for E_I -Proofs

Matrix interpretations are invariant under permutations:

- If i is an E_I or M_I -interpretation for R,
- and if π is a permutation on the index set $\{1, \ldots, n\}$,
- then there is also an $E_{\pi(I)}$ / $M_{\pi(I)}$ -interpretation for R.

A Normal Form for E_I -Proofs

Matrix interpretations are invariant under permutations:

- If i is an E_I or M_I -interpretation for R,
- and if π is a permutation on the index set $\{1, \ldots, n\}$,
- then there is also an $E_{\pi(I)}$ / $M_{\pi(I)}$ -interpretation for R.

 \Rightarrow W.I.o.g. we can replace an arbitrary set I by $\{1, \ldots, |I|\}$.

A Normal Form for E_I -Proofs

Matrix interpretations are invariant under permutations:

- If i is an E_I or M_I -interpretation for R,
- and if π is a permutation on the index set $\{1, \ldots, n\}$,
- then there is also an $E_{\pi(I)}$ / $M_{\pi(I)}$ -interpretation for R.
- \Rightarrow W.I.o.g. we can replace an arbitrary set I by $\{1, \ldots, |I|\}$.
- \Rightarrow A normal form: Choose $J = \{1, n\}$.
 - A proof of SN(R/S) via some E_I -interpretation can be replaced by a sequence of E_J -interpretations which successively remove the same rules.

Implementations: Performance

Percentage of YES in the 2006 SRS competition:

- MultumNonMulta (D.H.) 51 % matrix interpretations only
- Matchbox/Satelite (J.W.) 68 % labelling, matrices, RFC match-bounds
- TORPA (Hans Zantema) 75 % various techniques, including 3×3 matrices
- Jambox (Jörg Endrullis) 94 %
 ≈ Matchbox + dependency pairs

Implementations: TORPA

Random guesses or complete enumeration, using matrix shape

$$\begin{pmatrix} 0 & \ast & + \\ 0 & \ast & \ast \\ 0 & 0 & 0 \end{pmatrix} \subseteq \operatorname{core} \begin{pmatrix} 1 & \ast & \ast \\ 0 & \ast & \ast \\ 0 & 0 & 1 \end{pmatrix}$$

with $* \in \{0, 1, 4\}$. Occurs in 36% of its proofs, e.g. z007:

Implementations: MultumNonMulta

- Random guesses, random restart hill climbing; complete enumeration, ... (not in the competition version)
- Backward completion, see below.
 - Examples: z061 / z062 / ...
 - Example: Waldmann/r10

$$SN(\{ba^2b \to a^4, ab^2a \to b^4\}/\{b \to b^3\})$$

Sparse 14×14 matrices, found in 250 seconds.

- Determine additive weights using the GNU Linear Programming Kit.
 - Example: z112 / ...

Implementations: SAT Solving

- Fix dimension, say 5 ↔ Constraint system
 - $|\Sigma| \cdot d^2$ unknowns (matrix entries) and
 - $|R| \cdot d^2$ constraints (entries in differences).
- Fix maximal value for entries, say $7 = 2^3 1 \rightsquigarrow$ Finite domain constraint system
 - Binary encoding of entries → boolean SAT problem: e.g. 15.000 variables, 90.000 clauses, 300.000 literals
 - Solve by SAT solver, e.g. SatELiteGTI. Expl: z001 takes 7 seconds
- Jambox: Linear programming + SAT solving.
- Matchbox: Likewise, but using only one bit per entry: Computation in $\{0,1\} \subset \mathbb{N}$, so 1+1 is "forbidden".

Limitation: Derivational complexity

In a product of k matrices from a finite set, entries are bounded by an exponential function in k. Assume R has derivational complexity above exponential.

Limitation: Derivational complexity

In a product of k matrices from a finite set, entries are bounded by an exponential function in k. Assume R has derivational complexity above exponential.

- ⇒ There can be no strict matrix interpretation for R. Expl: $\{ab \rightarrow baa, cb \rightarrow bbc\}$
 - Derivational complexity doubly exponential.
 - But: "Relative" matrix proof with step-wise removal of rules is possible (first remove $cb \rightarrow bbc$).

Limitation: Derivational complexity

In a product of k matrices from a finite set, entries are bounded by an exponential function in k. Assume R has derivational complexity above exponential.

- ⇒ There can be no strict matrix interpretation for R. Expl: $\{ab \rightarrow baa, cb \rightarrow bbc\}$
 - Derivational complexity doubly exponential.
 - But: "Relative" matrix proof with step-wise removal of rules is possible (first remove $cb \rightarrow bbc$).
- ⇒ There can be no matrix interpretation at all for Rif each rule occurs "equally often". Expl: $\{ab \rightarrow bca, cb \rightarrow bbc\}$ (z018, z020)
 - Derivational complexity tower of exponentials.
 - But: Terminating via DP + matrix interpretations
 - (and RPO-terminating).

Limitation: Dimension restrictions

A matrix ring is not *free*: Certain polynomial identities hold.

• Dimension 1: [A, B] = 0

where [A, B] = AB - BA (commutator) \Rightarrow No 1-dim termination proof for $\{ab \rightarrow ba\}$.

Limitation: Dimension restrictions

A matrix ring is not *free*: Certain polynomial identities hold.

• Dimension 1: [A, B] = 0

where [A, B] = AB - BA (commutator) \Rightarrow No 1-dim termination proof for $\{ab \rightarrow ba\}$.

Dimension 2: [[A, B]², C] = 0
 ⇒ No 2-dim termination proof for
 {abcbc → cbcba, acbcb → bcbca, bccba → abccb, cbbca → acbbc}
 (Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.

Limitation: Dimension restrictions

A matrix ring is not *free*: Certain polynomial identities hold.

• Dimension 1: [A, B] = 0

where [A, B] = AB - BA (commutator) \Rightarrow No 1-dim termination proof for $\{ab \rightarrow ba\}$.

Dimension 2: [[A, B]², C] = 0
 ⇒ No 2-dim termination proof for
 {abcbc → cbcba, acbcb → bcbca, bccba → abccb, cbbca → acbbc}
 (Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.

Define SRS hierarchy by "minimal matrix proof dimension":

- Is every level inhabited?
- Which levels are decidable?

Proof Verification

- Although probably hard to find, a termination proof via matrix interpretations is easy to verify
- ... and verification is fast: PTIME

Proof Verification

- Although probably hard to find, a termination proof via matrix interpretations is easy to verify
- ... and verification is fast: PTIME
- Even if the matrix type is not "syntactically" specified:
 - It is decidable whether an arbitrary matrix interpretation i satisfies $i(R) \subseteq \operatorname{core}(i(\Sigma))$.
 - Even more: we can effectively determine a finite set $C \subseteq P$ such that $core(i(\Sigma)) = \{d \ge c \mid c \in C\}.$

Weighted Automata

Transitions have a natural number as *weight*:

A weighted automaton "is" a mapping $Q \times \Sigma \times Q \to \mathbb{N}$.

This mapping is extended to $Q \times \Sigma^* \times Q \to \mathbb{N}$:

- multiply weights along a single path,
- add weights of different paths.

Weighted Automata

Transitions have a natural number as *weight*:

A weighted automaton "is" a mapping $Q \times \Sigma \times Q \to \mathbb{N}$.

This mapping is extended to $Q \times \Sigma^* \times Q \to \mathbb{N}$:

- multiply weights along a single path,
- add weights of different paths.

W.I.o.g. $Q = \{1, ..., n\}.$

For a transition from state p to state q with weight n for letter a, the following representations are equivalent:

• State diagram:

$$p \xrightarrow{a:n} q$$

• Matrix interpretation: $i(a)_{p,q} = n$

Weighted Automata (cont'd)

• Matrix multiplication computes the transitive closure:

For $x \in \Sigma^*$, the weight of path $p \xrightarrow{x} q$ is $i(x)_{p,q}$

Weighted Automata (cont'd)

• Matrix multiplication computes the transitive closure:

For $x \in \Sigma^*$, the weight of path $p \xrightarrow{x} q$ is $i(x)_{p,q}$

• "Standard" automata: $Q \times \Sigma \times Q \rightarrow \{0, 1\}$.

• Other (semi-)rings possible

Zantema's System (cont'd)

The above matrix interpretation:

proves termination since

- all entries are ≥ 0 and
- marked entries are ≥ 1

Zantema's System (cont'd)

The same termination proof as a weighted automaton:

Zantema's System (cont'd)

The same termination proof as a weighted automaton:

Example:
$$\{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$$

Solution for RTA List of Open Problems #104:

A variant was published as a *monotone algebra* in IPL'06.

• Example: $\{bbcabc \rightarrow abbcbca\}$ (z061)

• Example: $\{bbcabc \rightarrow abbcbca\}$ (z061)

$$\Sigma:1 \underbrace{\begin{array}{c} \begin{array}{c} \\ \end{array}}{b:1} \underbrace{2 \\ \end{array}}{b:1} \underbrace{3} \underbrace{c:1}{4} \underbrace{4} \underbrace{a:1}{5} \underbrace{5} \underbrace{b:1}{6} \underbrace{c:1}{7} \underbrace{5}{\Sigma:1}$$

Done.

• Example: $\{bbcabc \rightarrow abbcbca\}$ (z061)

$$\Sigma:1 \xrightarrow{b:1} 2 \xrightarrow{b:1} 3 \xrightarrow{c:1} 4 \xrightarrow{a:1} 5 \xrightarrow{b:1} 6 \xrightarrow{c:1} 7 \xrightarrow{c:1} \Sigma:1$$

Done.

• Example: $\{bcabbc \rightarrow abcbbca\}$ (z062)

$$\Sigma:1 \underbrace{1}_{2} \underbrace{2}_{2} \underbrace{c:1}_{3} \underbrace{3}_{2} \underbrace{a:1}_{4} \underbrace{4}_{5} \underbrace{b:1}_{5} \underbrace{6}_{2} \underbrace{c:1}_{7} \underbrace{7}_{5} \Sigma:1$$
No: weight $\underbrace{1}_{2} \underbrace{bcabbc}_{4} = 0 \not\geq 1 = \operatorname{weight} \underbrace{1}_{2} \underbrace{abcbbca}_{4}$

• Example: $\{bbcabc \rightarrow abbcbca\}$ (z061)

$$\Sigma:1 \xrightarrow{b:1} 2 \xrightarrow{b:1} 3 \xrightarrow{c:1} 4 \xrightarrow{a:1} 5 \xrightarrow{b:1} 6 \xrightarrow{c:1} 7 \xrightarrow{c:1} \Sigma:1$$

Done.

• Example: $\{bcabbc \rightarrow abcbbca\}$ (z062)

Done: weight
$$\left(1 \xrightarrow{bcabbc} 4\right) = 1 = \text{weight} \left(1 \xrightarrow{abcbbca} 4\right)$$

Universität Innsbruck, 4. September 2006 – p.33/35

Discussion

- Matrix interpretations for term rewriting: Jörg Endrullis, J.W., Hans Zantema [IJCAR 2006]
- Well-founded rings as monotone algebras

Discussion

- Matrix interpretations for term rewriting: Jörg Endrullis, J.W., Hans Zantema [IJCAR 2006]
- Well-founded rings as monotone algebras
- **Dependency pairs** [Arts, Giesl 2000]:

SN(R) iff SN(DP(R)/R)

- The matrix method supports relative termination ⇒ it supports this basic version of the DP method.
- Marker symbols encode the idea that DP(R) steps only happen at the left end (for terms: top position).
 [IJCAR 2006]: the matrix method can be adapted to relative top-termination
- and can be combined with refinements [Hirokawa, Middeldorp 2004].

Future work

- Further instances of the general scheme are conceivable: Other matrix classes?
- Explain the relationship between proofs via E_I and via M_I .
- Explain the relationship between proofs via M_I and via $M_{I'}$ for $I \neq I'$.
- A normal form for M_I -proofs?
- Matrix interpretations are weighted finite automata. The method of (RFC) match-bounds also builds on weighted (annotated) automata.
 Unified view of these methods? (~> tomorrow)
- Good heuristics for backward completion.