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String Rewriting

Why study string rewriting?

* Oriented equations
~~ (semi-) group theory

* Universal computation model
~- recursion / complexity theory

* Model for non-deterministic processes

* Prototype for more general rewriting systems:
term / higher-order / graph / ...
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String Rewriting: Definitions

Letter: element of a set X, the alphabet
String: sequence of letters. 2* is the set of strings over X

String rewriting system: set of rules of the form ¢ — r,
l.e.aset R C X" x XF

Rewrite step: replace the left hand side of rule £ — r by
its right hand side: x/y — g xry within context x,y € *

Derivation: chain of rewrite steps
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String Rewriting: Example

R = {aa — be, bb — ac, cc — ab} induces derivation

bblaa|—p

blbblc—p

balcc|—p

blaalb—p

Is there an infinite derivation?

No: Termination proof by a matrix interpretation.
Exponential upper bound on dcp.

Open problem: polytime upper bound?
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Termination

Why study termination? Well . ..

Definition: System R is terminating
if any R-derivation contains only finitely many steps.
* Notation SN(R): R is strongly normalizing

* |n other words: — p is well-founded.

Expl.s of terminating systems:
* {aab — ba}
* {ab— ba}
* {ab — baa}

* {aa — aba}
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Zantema’s System {aabb — bbbaaa}

A test case for automated termination methods (z001).

(11000\ (10000\
00100 0000 O
a — O 100 O b — 0O 001 O

0200 0 0210 1
\ 0 000[1]/ \ 0 000[1]/
12101 12100 (00001\
00000 00000 0000 0

l—r)— 02101102001 =10010 0
04202 01202 0300 0
00001 00001 \0000 0)

* This interpretation proves termination since
all entries are > 0 and marked entries are | > 1

* Found automatically / Underlying theory elementary /
Fast verification
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Relative Termination

allows to remove rules successively ~
Modular termination proofs

Definition: System R is terminating relative to system S
if any R U S-derivation contains only finitely many R-steps.

* Notation: SN(R/S)

° In other words: — o — g o —7% is well-founded.

SN(R/S) and SN(S) imply SN(RU S)

Expl: {aa — aba} is terminating relative to {b — bb}.

Universitat Innsbruck, 4. September 2006 — p.7/35



Termination via Interpretations

Interpretations as order preserving mappings
into well-founded domains:
°* Let R and S be rewriting systems over >.*.
* Let (N,>) be a well-founded partial order.

If a mapping 7 : >* — N is order preserving both
e from (X*,—pg) to (IV,>) and
* from (X%, —g) to (N, >),

then R Is terminating relative to S.

ES ES ES
° > ® > @ > @ > @ S @ >
l—‘g I ) I I ) I é; I
° > ® > @ > @ > @ S @ >
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Ring Interpretations

Interpret the free monoid of strings in a ring:
* concatenation of factors — multiplication

* replacement of factors — substraction
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Ring Interpretations

Interpret the free monoid of strings in a ring:

* concatenation of factors — multiplication

* replacement of factors — substraction

For termination: Use an (infinite) ordered ring,
which is well-founded (on its “positive cone”).

* Expl: (Z,0,1,+,-) works for {aab — ba},
but doesn't work for {ab — ba}
as multiplication is commutative.

~ Use a

non-commutative ring

, €.g., a | matrix ring
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Well-founded Rings

A partially ordered ring (D,0,1,+,-,>):
* (D,0,4) an Abelian group, (D, 1,-) a monoid.
* Multiplication distributes over addition from both sides.
(Multiplication not necessarily commutative / invertible.)
* > is a compatible partial order:
a>b=a+c>b+c
a>bANc>0=a-c>b-cNc-a>c-b

lts positive cone: N={deD|d>0},
its strictly positive cone: P=N\{0}={de D |d>0}.
The ring is well-founded if > is well-founded on V.

* Note: The order is uniquely determined by these cones:
a>biffa—be Nanda>biffa—0b¢e P.

* Note: N-N C N, but P-P & P if zero divisors exist.
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Ring Interpretations (cont’d)

A ring interpretation of alphabet X is a mapping 7 : > — D
* extended to a mapping 7 : > — D on strings by

* extend to a mapping 7 : X x 2* — D on rules by

(0 —r)=14(f) —i(r)
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Termination via Ring Interpretations

Apply ring interpretations for proving termination:

Ensure i(xfy) > i(xry) for each step xly —g xry, i.e.,

Wzly) — i(zry) = i(x)i(0)i(y) — i(x)i(r)i(y)

=|i@)(i(6) — i(r) )i(y) € P

(*)

Given the set of interpretations of letters () = A, what is

the set of admissible interpretations of rules i(R) = B?
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Termination via Ring Interpretations

Apply ring interpretations for proving termination:
Ensure i(xfy) > i(xry) for each step xly —g xry, i.e.,

Wzly) — i(zry) = i(x)i(0)i(y) — i(x)i(r)i(y)

=|i(x)(i(0) —i(n)iw) e P|  (+)

Given the set of interpretations of letters () = A, what is
the set of admissible interpretations of rules i(R) = B?
From (x) it is obvious that A* BA* C P is necessary.

The largest such set B is

core(A)={d e D | A*dA* C P}

Example: For A = {(} )} we get core(4) ={d|d > (} 1)}
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Core Facts

* |ncreasing the range of interpretations of letters
typically reduces the set that can safely be chosen as
interpretations of rules:

It Ay C Ay, then core(Ap) O core(As)

* The range of all interpretations is upward closed:
W.l.o.g. for the interpretation of letters by

core(A + N) = core(A)

and for the interpretation of rules by

core(A) + N = core(A)
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Termination via Interpretations (cont’d)

Let R be a string rewriting system over X..
An interpretation 7 : X — N into a p.o.-ring is
order preserving

* from (X*, —p) to (D,>) iff i(R) C core(i(X))

Definition: Let A be a subset of the positive cone of a well-
founded ring. Then ¢ : X — A is an A-interpretation for R if

i(R) C core(A)

Theorem:

* |f there is an A-interpretation for R,
then R Is terminating.
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Termination via Interpretations (cont’d)

Let R, S be string rewriting systems over ..
An interpretation ¢ : > — N Into a p.o.-ring is
order preserving

* from (X*, —p) to (D,>) iff i(R)
* from (X%, —g) to (D, >) iff i(9)

core(i(22))

C
CN

Definition: Let A be a subset of the positive cone of a well-
founded ring. Then ¢ : X — A is an A-interpretation for R if

i(R) C core(A)

Theorem:

* If there is an A-interpretation i for R with 7(5) C V,
then R Is terminating relative to S.
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Matrix Interpretations

Consider the p.o. ring of square matrices

of a fixed dimension n over the integers: | D = Z™*"

* Addition / multiplication as usual.

°* 0 and 1 are the zero and the identity matrix resp.

* The order is defined component-wise:
d>eifVi,j:d;i;>ei;.

* The positive cone is N = N"*" and P = N \ {0}.

* The p.o. is well-founded on the positive cone.

* For n > 1, the p.o. is not total.

In order to apply the previous theorem we need

a set of matrices A C N with | non-empty core(A) |.

Universitdt Innsbruck, 4. September 2006 — p.15/35



Matrix Classes
Two particular instances of the above method:
* Choose A = M with core(A) = Mj.
* Choose A = E; with core(A) = Pr.

All these are simple “syntactically” defined subsets of IV,
parameterized by a set of matrix indices I C {1,... n}:

Mr={de N |Vieldjel:d;; >0}

Er= MM}

Pr={deN|Jdieldjel:d;; >0}
Consider only entries d; ; with 7, j € I

* Mj: no zero row

e FEr: no zero row, no zero column
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Example: {aa — aba}/{b — bb}

| 11 | 10
Z(a)<10> Z(b)<o 0)

Is an F-interpretation with
i(aa — aba) = i(aa) — i(aba) = (31) — (11) = (}9) € P
and i(b — bb) = i(b) —¢(bb) =0 € N.
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Example: {aa — aba}/{b — bb}

| 11 | 10
Z(a)<1o> Z(b)(o 0)

Is an F-interpretation with
i(aa — aba) = i(aa) — i(aba) = (31) — (11) = (}9) € P
and i(b — bb) = i(b) —¢(bb) =0 € N.

Alternatively, use the Ms-interpretation

. 1 1 , 0 1
z(a)(l()) z(b)(()l)

with i(aa — aba) = (1) — (28) = (§1) € My anc
i(b — bb) = 0. (This interpretation is not [y for any I.)
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Example: {aabb — bbbaaa}

OO |

SO HO O
SO OoO— O
SOSOON O

— OO O

N—

b —

g

OCOOoOO|

OO O
OO0 O
— O—QN O

— OO O

N 7

www(

This is an Ly 51-interpretation.

~ N

— OO OoOO

OO OoOO
OSDO—HOO
OSSO OMO
OO OO

N T

OO — N
SO ODO
— OO
ANOAN—O
— OO

— O — O
SO OOO
—O—NNO
ANOAN<HO
—OoOoOOO
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Example: Linear Interpretations

* All termination proofs by | additive natural weights

can be expressed as matrix interpretations:
(N, +) is isomorphic to ({({ 1) | n € N}, -) since

(™) -(m=0"m)

* More general: | Linear interpretations

* Interpret letters by functions An.an + b
on N with a,b € N and a > 1,

* concatenation is interpreted by function composition,
* proof obligation is Vn : ¢(£)(n) > i(r)(n).
This corresponds to matrix interpretations with matrices
of the form (& 7).

Universitdt Innsbruck, 4. September 2006 — p.19/35



A Normal Form for E/-Proofs

Matrix interpretations are invariant under permutations:
° If¢is an Ej- or Mj-interpretation for R,
* and if 7 is a permutation on the index set {1,...,n},

* then there is also an £ - / M (p)-interpretation for R.
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A Normal Form for E/-Proofs

Matrix interpretations are invariant under permutations:
° If¢is an Ej- or Mj-interpretation for R,
* and if 7 is a permutation on the index set {1,...,n},

* then there is also an £ - / M (p)-interpretation for R.

= W.l.o.g. we can replace an arbitrary set [ by {1,....|/|}.
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A Normal Form for E/-Proofs

Matrix interpretations are invariant under permutations:
° If¢is an Ej- or Mj-interpretation for R,
* and if 7 is a permutation on the index set {1,...,n},

* then there is also an £ - / M (p)-interpretation for R.

= W.l.o.g. we can replace an arbitrary set [ by {1,....|/|}.

= A normal form: Choose J = {1,n}.

* A proof of SN(R/S) via some E-interpretation
can be replaced by a sequence of E j-interpretations
which successively remove the same rules.
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Implementations: Performan

Percentage of YES in the 2006 SRS competition:

e MultumNonMulta (D.H.) 51 %
matrix interpretations only

e Matchbox/Satelite (J.W.) 68 %
labelling, matrices, RFC match-bounds

 TORPA (Hans Zantema) 75 %
various techniques, including 3 x 3 matrices

e Jambox (Jérg Endrullis) 94 %
~ Matchbox + dependency pairs
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Implementations: TORPA

Random guesses or complete enumeration, using matrix shape

0% |+
0 % * C core
00 O

with x € {0,1,4}. Occurs in 36% of its proofs, e.g. z007:

—_ % %X

oo
O ¥ ¥

TORPA 1.6 is applied to

ab ->ba,ba ->aachb,

[A] Choose interpretation in NxN,

order : (x,y) > (x’,y’) <==>x > X’ &y >= y’
a : lambda (x,y) . (x+y,4y)

b : lambda (x,y) . (x,4y+1)

c : lambda (x,y) . (x,0)

remove: a b -> b a
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Implementations: MultumNonMulta

* Random guesses, random restart hill climbing; complete
enumeration, ... (not in the competition version)

* Backward completion, see below.
* Examples: z061 / z062 / ...

* Example: Waldmann/r10
SN({ba*b — a*, ab’a — b*} /{b — b*})

Sparse 14 x 14 matrices, found in 250 seconds.

* Determine additive weights using the
GNU Linear Programming Kit.

* Example: z112 / ...
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Implementations: SAT Solving

* Fix dimension, say 5 ~» | Constraint system

 |¥|-d? unknowns (matrix entries) and

* |R| - d? constraints (entries in differences).

e Fix maximal value for entries, say 7 =23 — 1 ~~

Finite domain constraint system

* Binary encoding of entries ~ boolean SAT problem:
e.g. 15.000 variables, 90.000 clauses, 300.000 literals

* Solve by SAT solver, e.g. SatELiteGTI.
Expl: z001 takes 7 seconds

e Jambox: Linear programming 4+ SAT solving.

* Matchbox: Likewise, but using only one bit per entry:
Computation in {0,1} C N, so 1+ 1 is “forbidden”.
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Limitation: Derivational complexity

In a product of £ matrices from a finite set,
entries are bounded by an exponential function in k.
Assume R has derivational complexity above exponential.
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Limitation: Derivational complexity

In a product of £ matrices from a finite set,
entries are bounded by an exponential function in k.
Assume R has derivational complexity above exponential.

= There can be no strict matrix interpretation for R.
Expl: {ab — baa, cb — bbc}

* Derivational complexity doubly exponential.

* But: "Relative” matrix proof with step-wise removal
of rules is possible (first remove cb — bbc).
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Limitation: Derivational complexity

In a product of £ matrices from a finite set,
entries are bounded by an exponential function in k.
Assume R has derivational complexity above exponential.

= There can be no strict matrix interpretation for R.
Expl: {ab — baa, cb — bbc}

* Derivational complexity doubly exponential.

* But: "Relative” matrix proof with step-wise removal
of rules is possible (first remove cb — bbc).

— There can be no matrix interpretation at all for R
If each rule occurs “equally often”.

Expl: {ab — bca, cb — bbc} (z018, z020)
* Derivational complexity tower of exponentials.
* But: Terminating via DP 4+ matrix interpretations
* (and RPO-terminating).
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Limitation: Dimension restrictions

A matrix ring is not free: Certain polynomial identities hold.

* Dimension 1: [A, B] =0
where [A, B] = AB — BA (commutator)
= No 1-dim termination proof for {ab — ba}.
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Limitation: Dimension restrictions

A matrix ring is not free: Certain polynomial identities hold.

* Dimension 1: [A, B] =0
where [A, B] = AB — BA (commutator)
= No 1-dim termination proof for {ab — ba}.

e Dimension 2: [[A, B]?,C] =0
= No 2-dim termination proof for
{abcbe — cbeba, acbeb — bebea, becba — abeeb, cbbea — acbbe}

(Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.
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Limitation: Dimension restrictions

A matrix ring is not free: Certain polynomial identities hold.

* Dimension 1: [A, B| =0
where [A, B] = AB — BA (commutator)
= No 1-dim termination proof for {ab — ba}.

e Dimension 2: [[A, B]?,C] =0
= No 2-dim termination proof for
{abcbe — cbeba, acbeb — bebea, becba — abeeb, cbbea — acbbe}

(Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.

Define SRS hierarchy by “minimal matrix proof dimension:

* |s every level inhabited?
* Which levels are decidable?
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Proof Verification

* Although probably hard to find, a termination proof via
matrix interpretations is easy to verify ...

e _..and verification is fast: PTIME
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Proof Verification

* Although probably hard to find, a termination proof via
matrix interpretations is easy to verify ...

e _..and verification is fast: PTIME

* Even if the matrix type is not “syntactically” specified:

* |t is decidable whether an arbitrary matrix
interpretation ¢ satisfies i(R) C core(i(X)).

* Even more: we can effectively determine a finite set
C' C P such that core(i(X)) ={d>c|ce C}.
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Weighted Automata

Transitions have a natural number as weight:
A weighted automaton “is” a mapping () x > x () — N.

This mapping is extended to () x >* x () — N:
* multiply weights along a single path,
* add weights of different paths.
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Weighted Automata

Transitions have a natural number as weight:
A weighted automaton “is” a mapping () x > x () — N.

This mapping is extended to () x >* x () — N:
* multiply weights along a single path,
* add weights of different paths.

W.log Q={1,...,n}
For a transition from state p to state ¢ with weight n
for letter a, the following representations are equivalent:

e State diagram: (D)%)

* Matrix interpretation:  i(a)p,, =n

Universitdt Innsbruck, 4. September 2006 — p.28/35



Weighted Automata (cont’d)

* Matrix multiplication computes the transitive closure:

For z € ¥*, the |weight of path IS i()p.q
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Weighted Automata (cont’d)

* Matrix multiplication computes the transitive closure:

For z € ¥*, the |weight of path IS i(7)p,q

e “Standard” automata: Q x ¥ x Q@ — {0,1}.

e Other (semi-)rings possible ...
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Zantema’s System (cont’d)

The above matrix interpretation:

(1100()\ (1_0000\
00100 0000 0
a — 0O 100 O b +— 0 001 O
0200 0 0210 1
\ 0 000[1]/ \ 0 000[1]/
12101 12100 (00001\
00000 00000 0000 O
l—r)— 1021011102001 =100100
04202 01202 0300 0
0000 1 00001 \00000)

proves termination since

e all entries are > 0 and

e marked entries are | > 1
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Zantema’s System (cont’d)

The same termination proof as a weighted automaton:

a:1l b:1
a:l,b:lC@ a:l @m b:1 Ojazl,bzl

s

a:2,b:2
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Zantema’s System (cont’d)

The same termination proof as a weighted automaton:

a:1l b:1
- a:l mmm b:1 -
a:1,b:1 C@ @ @ 4 @D a:1,b:1

s

a:2,b:2
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Example: {aa — bc, bb — ac, cc — ab}

Solution for RTA List of Open Problems #104:

b:2

N

1

i1

a:2,c:1

a:2,c:2

A variant was published as a monotone algebra in IPL'06.
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Automata: Large and Sparse
* Example: {bbcabc — abbcbea} (z061)
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Automata: Large and Sparse
* Example: {bbcabc — abbcbea} (z061)
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Automata: Large and Sparse
* Example: {bbcabc — abbcbea} (z061)

5.1 (i. b:1 . b:1 . c:1 . a:1l . b:1 . c:1 .ﬁj 5.1

Done.

e Example: {bcabbc — abcbbea} (z2062)

1 c b:1 9 c:1 e a:1 e b:1 e b:1 @ c:1 a $.1
No: weight () =0 7 1 = weight ()
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Automata: Large and Sparse
* Example: {bbcabc — abbcbea} (z061)

.1 (i. b:1 . b:1 . c:1 . a:1l . b:1 . c:1 .ﬁ) $.1

Done.

e Example: {bcabbc — abcbbea} (z2062)

.1 (j. b:1 . c:1 . a:1 .}< b:1 ! b:1 ’ c:1 .@ .1

c:1

Done: weight () = 1 = weight ()
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Discussion

* Matrix interpretations for term rewriting:
Jorg Endrullis, J.W., Hans Zantema [IJCAR 2006]

* Well-founded rings as monotone algebras
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Discussion

* Matrix interpretations for term rewriting:
Jorg Endrullis, J.W., Hans Zantema [IJCAR 2006]

* Well-founded rings as monotone algebras

e Dependency pairs [Arts, Giesl 2000]:
SN(R) iff SN(DP(R)/R)

* The matrix method supports relative termination =
It supports this basic version of the DP method.

* Marker symbols encode the idea that DP(R) steps

only happen at the left end (for terms: top position).
[IJCAR 2006]: the matrix method can be adapted to
relative top-termination

* and can be combined with refinements [Hirokawa,
Middeldorp 2004].
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Future work

Further instances of the general scheme are conceivable:
Other matrix classes?

Explain the relationship between proofs
via £y and via Mj.

Explain the relationship between proofs
via M7 and via My for I # 1’

A normal form for M-proofs?

Matrix interpretations are weighted finite automata.
The method of (RFC) match-bounds also builds on
weighted (annotated) automata.

Unified view of these methods? (~ tomorrow)

Good heuristics for backward completion.
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