Computermusik Vorlesung WS 18

Johannes Waldmann

1. Februar 2019

Organisatorisches

Die LV insgesamt

- jede Woche eine Vorlesung, eine Übung
- Prüfungszulassung: regelmäßiges und erfolgreiches Bearbeiten von Übungsaufgaben (teilw. autotool)
- Prüfung:
 - (gemeinsames) Abschluß-Konzert
 - (individuelle) Dokumentation (welche kreative Idee wurde wie realisiert)

Übungen

- Sie benutzen die Rechner im Pool (Z430) mit dort installierter Software. — Kopfhörer mitbringen!
 - Es ist zu empfehlen, die gleiche Software auch auf Ihren privaten Rechnern zu installieren, damit Sie selbst experimentieren und Hausaufgaben erledigen können. Ist aber nicht zwingend nötig—Rechner im Pool können außerhalb von LV frei benutzt werden.
- wir verwenden ausschließlich freie Software (Definition: siehe https://www.gnu.org/philosophy/free-software-intro.html) (Debian-Pakete oder selbst kompiliert). Alles andere wäre unwissenschaftlich weil man es eben nicht analysieren und ändern kann.

Aufgaben

Das sind Beispiele für Tätigkeiten, die in dieser LV (und in allen anderen) immer wieder vorkommen: nicht nur Software bedienen und Knöpfchen drehen, sondern auch: Analysieren, Rechnen, Recherchieren, historisch einordnen, Programmieren (Synthetisieren).

- ausprobieren: Hydrogen (Drum-Sequencer) → Rakarrack (Effekt-Prozessor)
 - Audio-Routing mit qjackctl
- Finden Sie die von Hydrogen benutzte Audio-Datei für TR808 Emulation Kit, Kick Long
 - anhören mit vlc,

konvertieren Sie mit sox in wav-Format, (Hinweis:

man sox),

betrachten Sie Dateiinhalt (Amplituden-Verlauf) mit

```
gnuplot -persist -e "plot 'kick.wav' binary
```

Bestimmen Sie mittels dieses Bildes die Grundfrequenz der Schwingung. Welche weitere Information ist dazu nötig, woher bekommen Sie diese?

betrachten Sie Dateiinhalt mit

```
od -cx kick.wav | less
```

Wo endet der Header (wo steht das erste Datenbyte)?

Suchen Sie die offizielle WAV-Spezifikation, bestimmen Sie deren bibliografische Daten (Autor/Gremium, Ort,

Jahr)

Erzeugen Sie durch ein selbstgeschriebenes Programm (Sprache beliebig) eine wav-Datei, die einen (kurzen) Sinus-, Dreieck-, oder Rechteckton enthält, ansehen mit gnuplot, abspielen mit vlc, verwenden Sie das als Sample in Hydrogen.

 Wie sah diese Maschine (TR808) aus? Welche Band führt diese Maschine im Namen? (Hinweis:

```
http://www.vintagesynth.com/)
```

Kann Hydrogen alle dort angegebenen Eigenschaften des Originals simulieren?

simulieren Sie wesentliche Elemente aus *Ritchie Hawtin: Minus Orange 1*

Einleitung

Definition Computermusik

- Computermusik fassen wir auf als:
 - Analyse und Synthese von Musik mithilfe der Informatik (Algorithmen, Software)
 - (A: hören, verstehen; S: komponieren, aufführen)
- beruht auf Modellen aus der Musiktheorie, z.B. für
 - Erzeugung von Klängen in physikalischen Systemen,
 - das Tonmaterial:
 - Tonhöhe, Konsonanz und Dissonanz, Akkorde, Skalen
 - die zeitliche Anordnung des Materials:
 Rhythmen, Melodien, Kadenzen, Kontrapunkt

Definition Musik

- die Kunst der zeitlichen Anordnung von Klängen.
 (Edgar Varese 1883–1965: I call it organised sound)
- "Kunst" bedeutet: der Autor (Komponist, Interpret) will im Hörer Empfindungen hervorrufen
- das geht sowohl sehr direkt, Beispiele:
 - Tonreihe aufsteigend: Frohsinn, absteigend: Trübsal
 - Dissonanz ⇒ Spannung, Unruhe;
 Konsonanz ⇒ Auflösung, Ruhe
 als auch indirekt, Beispiele:
 - Zitat (Parodie) von Elementen andere Musikwerke:
 Anerkennung (Daft Punk ⇒ Giorgio Moroder),
 Aneignung (F.S.K.), Ablehnung (Punk ⇒ Prog Rock).

Definition Pop(uläre) Musik

- die mechanische (Aufnahme und) Vervielfältigung von Audiosignalen (seit ca. 1920, Grammophon) trennt die *Aufführung* vom ihrem *Resultat* (dem Klang)
 (Elijah Wald, An Alternative History of American Popular Music, Oxford Univ. Press, 2009)
- dadurch entsteht Popmusik, das ist etwas Neuartiges
 - statt Komposition (Klassik) oder Improvisation (Jazz):
 Produktion des Klangs in einem Studio
 - rezipiert wird nicht nur der Klang, sondern unzählige Nebenprodukte, insb. Bilder (z.B. Schallplattenhüllen) die Bedeutung wird daraus vom Fan konstruiert

(Diederich Diederichsen, Über Popmusik, Kiepenheuer, 2014)

– Typeset by Foil T_EX –

Hörbeispiele

- Daft Punk (Guy-Manuel de Homem-Christo und Thomas Bangalter): Giorgio by Moroder (LP Random Access Memories, 2013)
- Donna Summer: I Feel Love (Single, 1977) Produzent: G. Moroder
- Kraftwerk (Ralf Hütter und Florian Schneider): Autobahn (LP 1974), aufgenommen im Studio Conny Plank
- Neu! (Michael Rother und Klaus Dinger): Hallogallo (1972), Produzent: Conny Plank
- Stereolab (Tim Gaine, Laetitia Sadier u.a.): Jenny Ondioline (1993)
- Grandmaster Flash (Joseph Sadler) The Message (1982)
- Big Black (Steve Albini u.a.): Kerosene (1986)

Plan unserer Vorlesung

- KW 42: Klang-Erzeugung (Physik der Musikinstrumente)
- KW 43: Klang-Analyse (Spektren) und Klangveränderung
- KW 44: Analog-Synthesizer (und ihre Simulation)
- KW 45: Algebraische Beschreibung von Klängen (csound-expression)
- KW 46: Töne, Skalen, Konsonanzen, Akkorde, Kadenzen
- KW 47: Algebra Of Music (haskore), Notensatz (lilypond)
- KW 48: A Pattern Language (tidal-cycles, supercollider)
- ab hier Reihenfolge noch unklar:
- KW 49: Rhythmus (breakbeat science)

- KW 50: Mathematische Musiktheorie
- KW 51: Musikgeschichte, Zwischenstand Projekte
- KW 54: Audio-Analyse
- KW 55: Digital Audio Workstations (ardour, sooperlooper)
- KW 56: algorithmische Mechanik
- KW 57: Zusammenfassung, Abschluß Projekte

Geräusch und Klang

Begriffe

- Geräusch:
 - erzeugt durch Schwingungen eines physikalischen Systems (z.B. Musikinstrument)
 - übertragen durch Druckschwankungen in einem Medium (z.B. Luft), durch Ohr wahrnehmbar
- Klang: ... durch *periodische* Schwingungen ...
- virtuelle (elektronische) Instrumente
 - simulieren den physikalischen Vorgang
 - oder speichern nur dessen Amplitudenverlauf
- Unterschied zu automatischem Spiel reeller Instrumente

Modell einer periodischen Schwingung

Modell:

- ein Körper mit Masse m und Ruhelage 0 bewegt sich auf einer Geraden g, d.h., hat zum Zeitpunkt t die Koordinate y(t)
- die Rückstellkraft (bei Pendel: durch Schwerkraft, bei schwingender Saite: durch Elastizität) ist $F = -k \cdot y$. Notation: das ist eine Gl. zw. Funktionen (der Zeit)!
- mathematische Beschreibung
 - Geschwindigkeit v = y', Beschleunigung a = v' = y''
 - nach Ansatz ist $a = F/m = -(k/m) \cdot y$
 - y ist Lsg. der Differentialgleichung -(k/m)y = y''

Numerische Näherungslösung der Dgl.

- gegeben k, m, bestimme Funktion y mit -(k/m)y = y''
- numerische Näherungslösung durch Simulation: ersetze Differentialgl. durch Differenzengl. wähle y_0 (initiale Auslenkung), $\Delta > 0$ (Zeitschritt), bestimme Folgen $y_0, y_1, \ldots, v_0 = 0, v_1, \ldots, a_0, a_1, \ldots$

mit
$$a_i = -(k/m)y_i$$
, $v_{i+1} = v_i + \Delta a_i$, $y_{i+1} = y_i + \Delta v_i$

- ausrechnen in Haskell, anzeigen mit https: //hackage.haskell.org/package/gnuplot-0.5.
 5.3/docs/Graphics-Gnuplot-Simple.html
- genaueres in VL Numerik,
 - z.B.: *Stabilität* besser, wenn $y_{i+1} = y_i + \Delta v_{i+1}$

Exakte Lösung der Dgl.

- gegeben k, m, bestimme Funktion y mit -(k/m)y = y''
- genaueres siehe VL Analysis, z.B. Ansatz von y als
 - Potenzreihe mit unbestimmten Koeffizienten
 - Linearkombination von Basisfkt, mit unbest, Koeff.
- wenn man Glück hat, oder die numerische Lösung gesehen hat:
 - Ansatz $y(t) = \cos(f \cdot t)$

• wir erhalten die reine harmonische Schwingung

Anpassung und Anwendung

- diese Modell ist Energie-erhaltend
 - tatsächlich wird aber Energie abgegeben (1.über das Medium an den Sensor, 2. durch Reibung im schwingenden Körper als Wärme an die Umgebung)
- Modellierung der *Dämpfung* z.B. durch Reibungskraft proportional zu Geschwindigkeit $F_R = r \cdot v = r \cdot y'$ Aufstellen und Simulation der Dgl. in Übung.
- mit diesem Modell können wir beschreiben:
 - Klang einer Saite (Gitarre, Klavier, Cembalo) (nicht Geige)
 - Klang eines Trommelfells (Fußtrommel, nicht Snare)

Weitere period. Schwingungen f. Instrumente

 Wirkung der Dämpfung kann durch regelmäßige Energiezufuhr ausgeschaltet werden (⇒ angeregte Schwingung) z.B. das Anstoßen einer Schaukel

• Geige:

Bewegung des Bogens führt der Saite Energie zu regelmäßige Unterbrechung durch Kontaktverlust Bogen-Saite bei zu starker Auslenkung

• Blasinstrumente:

Anblasen führt der schwingenden Luftmenge Energie zu regelmäßige Unterbrechung durch Blatt (Oboe, Saxofon), Lippen (Trompete) oder Luftsäule selbst (Orgel, Flöte)

Geräusch-Instrumente

- nichtperiodisches Verhalten kann erzeugt werden durch
 - nichtperiodische Schwingung eines phys. Systems z.B. Doppel-Pendel, Mehr-Körper-System keine direkte Anwendung als Instrument bekannt, Simulation evtl. für virtuelle Instrumente nützlich
 - Überlagerung (fast gleichzeitiger Ablauf) sehr vieler unterschiedlicher periodischer Schwingungen für zahlreiche (Rhythmus)-Instrumente benutzt, z.B.
 - Maracas (Rumba-Kugel): enthalten viele kleine harte
 Klangkörper, die aneinanderstoßen
 - Snare (kleine Trommel): mehrere Federn, die gegen
 Fell der Unterseite schlagen (schnarren)

Chaotische Schwingungen

- wenn man das wirklich nur simulieren möchte, nicht mechanisch realisieren,
- dann kann man auch Systeme ohne mechanisches Äquivalent betrachten
- Bsp: die Iteration der Funktion

$$f: [0,1] \to [0,1]: x \mapsto 4 \cdot (x-1/2)^2$$

zeigt aperiodisches (chaotisches) Verhalten

• Ü: Wertefolge ausrechnen, ansehen, anhören

Übungen für KW 43

- Wie wird Musikgeschichte zitiert (im Klang und) im Text von: DJ Hell: Electronic Germany (2009)
 - Wer singt auf *U Can Dance* des gleichen Albums? War früher (viel früher) in welcher Band? Wer hat dort anfangs elektronische Instrumente gespielt? Danach welchen Musikstil erfunden?
- weitere Beispiele für Musikzitate suchen, genau beschreiben, was zitiert wird, wie groß der Abstand ist (zeitlich, inhaltlich) und diskutieren, warum.
- Schwingungen (periodische, gedämpfte, chaotische)
 Einzelheiten und Quelltexte:

```
https://gitlab.imn.htwk-leipzig.de/
```

waldmann/cm-ws18/tree/master/kw42

- simulieren, Resultate ansehen, anhören.
- als benutzerdefiniertes Drumkit in Hydrogen benutzen.
- Schwingungen von (Aufnahmen von) reellen oder virtuellen Musikinstrumenten ansehen
- mit den selbst ausgerechneten vergleichen

Klang-Analyse

Definition, Motivation

jede periodische Schwingung kann als gewichtete
 Summe harmonischer Schwingungen dargestellt werden

```
(Jean Fourier, 180?, http://www-history.mcs.st-and.ac.uk/Biographies/Fourier.html)
```

- die Folge dieser Gewichte der Obertöne ist das Spektrum, das charaktetisiert die Klangfarbe
- Änderung des Amplitudenverlaufs linear (z.B. Filter), nichtlinear (z.B. Verzerrer)
- kann beschrieben werden als Änderung des Spektrums

Periodische Funktionen

- für $\Omega = [-\pi, \pi]$ betrachte $P = \{f \mid f : \Omega \to \mathbb{R}\}.$
- P ist Vektorraum (Addition, Skalierung) und Hilbert-Raum
- Skalarprodukt $\langle f,h \rangle := \int_{\Omega} f(x) \cdot g(x) \; dx$, Norm $|f| = \sqrt{\langle f,f \rangle}$
- $b_1 = 1, b_2 = \sin(x), b_3 = \cos(x), b_4 = \sin(2x), b_5 = \cos(2x), \dots$ bilden eine *orthogonale Basis* für P nach geeigneter Skalierung sogar ortho*normal*
- jedes $f \in \mathsf{P}$ eindeutig darstellbar als Linearkombination von Basisvektoren $f = \sum_i \langle f, b_i \rangle / |b_i|^2 \cdot b_i$
- weitere Voraussetzungen sind nötig (damit Integrale und Summen existieren), siehe VL Analysis
- numerisch: approximiere Integral durch Summe

Beispiel: Rechteck-Schwingung

• $\Omega \to \mathbb{R}: t \mapsto \text{if } t < 0 \text{ then } -1 \text{ else if } t = 0 \text{ then } 0 \text{ else } 1$ das ist die Signum- (Vorzeichen)-Funktion sign

•
$$\operatorname{sign}(x) = (4/\pi) \sum_{k \text{ ungerade}} \frac{\sin(kx)}{k}$$

(nur ungerade Oberwellen)

Nebenrechnungen:

- $\cos(kx)$ ist gerade Funktion, $\mathrm{sign}(x)$ ungerade, deswegen $\langle \mathrm{sign}(x), \cos(kx) \rangle = 0$
- $\langle \mathrm{sign}(x), \mathrm{sin}(kx) \rangle = 2 \cdot \int_{[0,\pi]} \mathrm{sin}(kx) dx = [-1/k \cdot \mathrm{cos}(kx)]_0^\pi =$ if 2|k then 0 else 4/k

Beispiel: Sägezahn-Schwingung

- $f:\Omega \to \mathbb{R}:x\mapsto x$
- numerische Bestimmung der Fourier-Koeffizienten

• Vermutung $f = -\frac{2}{\pi} \sum_{k>1} \frac{(-1)^k}{k} \sin(kx)$ (alle Oberwellen)

Spektren von Audiosignalen

- Spektrum eines Signals f kann so bestimmt werden:
- teile Signal in Zeit-Intervalle (z.B. $\Delta = 1/10$ s),

$$f_i: [-\Delta, \Delta] \to \mathbb{R}: t \mapsto f(i\Delta + t)$$

- wähle Frequenz-Werte k_1, k_2, \ldots
- ullet bestimme Koeffizienten der Freq k_j zur Zeit $i\Delta$ als $\langle f_i,k_j
 angle$
- Anzeige z.B. in vlc: Audio → Visualisations → Spectrum
- es gibt schnellere Algorithmen (diskrete Fourier-Transformation)
- das Ohr bestimmt die Fourier-Koeffizienten durch Resonanz in der Schnecke (Cochlea),
 Frequenz-Auflösung ist ca. 3 Hz bei 1 kHz

Programme zur Spektral-Analyse

 Chris Cannam, Christian Landone, and Mark Sandler: Sonic Visualiser: An Open Source Application for Viewing, Analysing, and Annotating Music Audio Files, in Proceedings of the ACM Multimedia 2010 International Conference.

https://sonicvisualiser.org/

• Anwendungsbeispiel:

Aphex Twin, $\Delta M_i^{-1} = -\alpha \Sigma D_i[\eta] F j_i[\eta - 1] + F \mathsf{ext}_i[\eta^- 1]$,

Album: Windowlicker, 1999.

hergestellt mit Metasynth (Eric Wenger, Edward Spiegel, 1999) http://www.uisoftware.com/MetaSynth/,

Spektren von Klängen/Instrumenten

- harmonische Schwingung: keine Oberwellen
- kommt in der Natur selten vor und ist für Musikinstrumente auch gar nicht erwünscht:
 Oberwellen ergeben interessantere Klänge, die auch variiert werden können
- Bsp: Gitarre: Anschlagen nahe dem Steg: viele Oberwellen, zur Saitenmitte: weniger.
- Bsp. Schlagzeug (Trommel, Tom): Anschlag Mitte/Rand
- Bsp: Orgel: offene und gedackte Pfeifen
 Ü: dazu in Kalähne: Akustik (1913) nachschlagen

Klangveränderung durch Filter

- ein Filter ist ein Operator von (Ω → ℝ) nach (Ω → ℝ)
 (eine Funktion der Zeit auf eine Funktion der Zeit,
 d.h., Filter ist Funktion zweiter Ordnung)
- Bsp: der Operator scale_s : $g \mapsto (x \mapsto s \cdot g(x))$
- Bsp: der Operator shift $_t: g \mapsto (x \mapsto g(x-t))$ akustisch ist das ein *Echo*. Mehrere Echos ergeben *Hall*. Realisierungen:
 - Speicherung auf Tonband-Schleife
 - Federhallstrecke (Drehschwingung einer Feder)
 typisch für: Gitarrenklang in Surf-Musik (Bsp: Dick Dale),
 Gesamtklang im (Dub) Reggae (Bsp: Lee Perry)

Klangveränderung durch Filter

Operator F ist linear (L), wenn

$$\forall a, b \in \mathbb{R}, g, h \in (\Omega \to \mathbb{R}) : F(a \cdot g + b \cdot h) = a \cdot F(g) + b \cdot F(h)$$

- F ist zeit-invariant (TI), wenn $\forall t \in \mathbb{R}: \mathsf{shift}_t \circ F = F \circ \mathsf{shift}_t$
- Satz: jeder LTI-Filter kann als (Limes einer unendl.)
 Summe von shift und scale dargestellt werden
- Satz: jeder lineare Filter operiert auch linear auf den Fourier-Koeffizienten.
- Folgerung: Obertöne werden geschwächt oder verstärkt, aber niemals "aus dem Nichts" erzeugt.

Das begründet den Wunsch nach nichtlinearen Filtern (Verzerrern).

Übungsaufgaben zu VL KW43

- mit Hydrogen und Rakarrack Aspekte des Schlagzeugs (Rhythmus, Sound) nachbauen:
 - Vivien Goldman (und New Age Steppers): *Private Armies Dub* (1981)
 - (Produzent: Adrian Sherwood, vgl. Bugaloo (2003, video)
- Fourier-Koeffizienten einer Rechteck-, Sägezahn-, Dreiecks-Schwingung bestimmen:
 - Skalarprodukte symbolisch oder numerisch bestimmen
 - Amplitudenverlauf in WAVE-Datei schreiben und Spektrum analysieren (sonic-visualiser)
- Phaser: für eine Sägezahnschwingung f: bestimmen Sie

Amplitudenverlauf und Spektrum der Schwingung $f + \text{scale}_{-1}(\text{shift}_d(f))$ abhängig von Parameter $d \in [0, \pi]$.

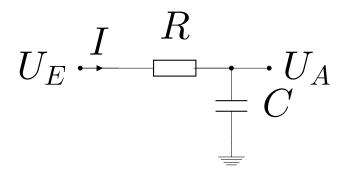
Echo, Hall, Phaser selbst implementieren

Verzögern und ggf. rückkoppeln

(WAVE-Datei lesen, bearbeiten, schreiben)

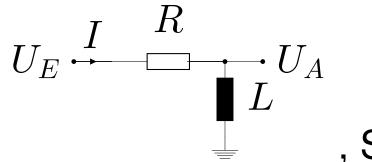
Ansatz: https://gitlab.imn.htwk-leipzig.de/
waldmann/cm-ws18/tree/master/kw43

Elektrische Schwingungen

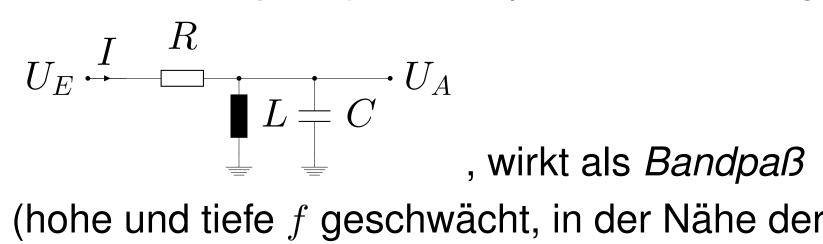

Plan

- bisher: mechanische Schwingungen
 - Bsp: Massepunkt/Feder,
 - Anwendung: akustische Musikinstrumente Bsp: Saiten, Membrane, Luftsäulen
- jetzt: elektrische Schwingungen (und Filter)
 - Bsp: Oszillator (LC), Tiefpaß (RC)
 - Anwendungen:
 - * Analog-Synthesizer (Robert Moog 64, Don Buchla 63)
 - Simulation von A.-S. (csound, Barry Vercoe, 1985)
 - Ziele: 1. möglichst exakte Nachbildung (des Akustischen, des Analogen), 2. völlig neuartige Klänge

Elektrische Schaltungen


- Schaltung: gerichteter Graph,
 - Kanten sind Bauelemente
 - * ohne Zustand: Widerstände, Verstärker (Transistor)
 - * mit Zustand:
 - Kondensator: Ladung, Spule: magnetisches Feld
 - durch jede Kante fließt Strom,
 jeder Knoten hat Potential
 - besondere Knoten: Masse (0), Eingabe, Ausgabe
- Zustandsänderung ist Funktion der Ströme und Spannungen
- Schaltung realisiert einen Operator von (Zeit → Eingabe) nach (Zeit → Ausgabe)

Schaltung – Beispiel


- Schaltung:
- Widerstand: $U_E U_A = R \cdot I$ (siehe auch Kraftwerk: *Ohm Sweet Ohm*, 1975)
- Kondensator: $I = C \cdot \frac{dU_A}{dt} = C \cdot U_A'$
- Bsp: $U_E(t)=1$ V, $U_A(0)=0$ (Kondensator leer) $C\cdot U_A'=I=(1-U_A)/R$, Simulation, exakte Lösung
- Bsp: $U_E(t) = \sin(2\pi f t)$, $U_A(t) = ?$
- wirkt als Tiefpaß-Filter: Schwächung hoher Frequenzen

Weitere Filter

, Spule:
$$U_A = L \cdot \frac{dI}{dt} = L \cdot I'$$

wirkt als Hochpaß (tiefe Frequenzen werden geschwächt)

- (hohe und tiefe f geschwächt, in der Nähe der Resonanzfrequenz weniger)
- Bandpaß mit Rückführung und Verstärkung: wirkt als *Oszillator* (schwingt auf Resonanzfrequenz)

Spannungsgesteuerte Schaltungen

- wesentlich für musikalische Anwendungen:
 - Steuerung von System-Eigenschaften (z.B. Resonanzfrequenz, Filter-Steilheit) durch
 - Ausgabe-Spannung anderer Teilsysteme
 - Bedienerschnittstelle (Regler, Klaviatur ebenfalls als Spannungsquellen realisiert)
- → modularer Aufbau eines Synthesizers, Verbindung der Komponenten (= Programmierung) durch Kabel/Stecker
- Robert Moog: Voltage Controlled Electronic Music Modules, J. Audio Engineering Soc. Volume 13 Issue 3 pp. 200-206; July 1965, http:

//www.aes.org/e-lib/browse.cfm?elib=1204

Spannungsgesteuerte Komponenten

- Verstärker (VCA, voltage controlled amplifier)
 - eigentlich Multiplizierer: $U_A(t) = U_C(t) \cdot U_E(t)$
- Oszillator (VCO)
 - Steuerspannung ~ Frequenz: $U_A(t) = \sin(U_C(t) \cdot t)$
- Filter (VCF): Steuerspannung ~ Resonanzfrequenz
- periodische U_C mit kleiner Frequenz erzeugt durch LFO (low frequency oscillator)

Steuerspannungen aus Benutzeraktionen

- einfachste Möglichkeit: Taste drücken/loslassen
 Impulslänge je nach Eingabe, Impulshöhe konstant
- mehr Ausdruck: Stärke des Tastendrucks bestimmt Impulshöhe (konstant über gesamte Länge)
- (Luxus: *gewichtete* Tastatur, simuliert Trägheit der Klavier-Mechanik)
- (Hüll)kurvenparameter für nicht-konstante Impulse:
 - Attack (Anstiegszeit auf maximale Höhe)
 - Decay (Abfallzeit bei noch gedrückter Taste)
 - Sustain (Impulshöhe nach Decay)
 - Release (Abfallzeit nach Loslassen der Taste)

Erste Synthesizer in populärer Musik

- spannungsgesteuerte modulare Synthesizer produziert ab 1963 (Robert Moog, Don Buchla)
 (Bsp: Buchla: *In The Beginning Etude II*, 1983?)
- erste Anwendungen (auf publizierten Aufnahmen)
 - für exotische Klänge als Verzierung in Standard-Popmusik (Byrds: Space Odyssey, 1967)
 - als Solo-Instrument
 - als Ersatz klassischer Instrumente, für klassische Musik (Wendy Carlos: Switched on Bach, 1968)
 - * für neuartige, eigens komponierte Musik (Morton Subotnick: *Silver Apples of the Moon*, 1967)
- (frühere elektronische Instrumente: siehe 120 Years of Electronic Music http://120years.net/)

Simulation mit grafischer Programmierung

- ALSA modular synthesizer
- Komponenten (LFO, VCO, VCF, ...) auf Arbeitsfläche,
- Verbindung durch Kabel (Ausgangsgrad beliebig, Eingangsgrad 1)
- Verbindungen zur Außenwelt (Bsp.)
 - In: MCV (MIDI control voltage) Steuerspannung ist Tonhöhe der Taste eines virtuellen Keyboards (z.B. vkeybd) oder externen Keyboards (z.B. USB-MIDI) qjackctl (Alsa): virtual keybd output — ams input
 - Out: PCM, qjackctl (Audio): ams output port — system input port

Übungen zu VL KW 44

Hausaufgabe:

• wie lautet die exakte (stationäre) Lösung für den RC-Tiefpaß mit Eingabe $U_E(t) = \sin(2\pi f t)$?

Ansatz: $U_A(t) = a \cdot \sin(2\pi f t + \phi)$ mit unbekannten a, ϕ .

in der Übung:

- evtl. Experimente mit https://gitlab.imn.
 htwk-leipzig.de/waldmann/circuit, evtl. als autotool-Aufgabe
- Experimente mit ALSA modular synthesizer:
 - Ausprobieren LFO, VCO, VCF, MCV, ADSR (Env)
 - die zeitliche Umkehrung einer ADSR-Kurve ist im

allgemeinen nicht ADSR – sondern nur für welche Parameter?

- Nachbilden bestimmter Klänge
 - * base drum,
 - * snare drum,
 - der Grashüpfer in "Biene Maja" (deutsche Tonspur der japanischen Verfilmung von 1975)
 - Becken (hihat, crash, ride)
 - * Metallophon,
 - Flexaphon (Hörbeispiel: ca. bei 0:55 in Can: Sing Swan Song, 1972)
 - * Xylophon,
 - Orgelpfeife, (Pan)Flöte
 - * einzelner Wassertropfen, Regen, Wasserfall, Meer

Programme für Klänge

Motivation

- elektrische Schaltungen zur Klangerzeugung ...
- real bauen (Analog-Synthesizer, Moog, Buchla, ...)
- oder simulieren. Bedienung/Beschreibung
 - grafisch (alsa modular synthesizer)
 - textuell (durch eine DSL)
 - * separate DSL, Bsp: Csound

```
https://csound.com/, Barry Vercoe 1985
```

* eingebettete DSL (in Haskell): csound-expression https://hackage.haskell.org/package/ csound-expression, Anton Kholomiov hall 0.5 (usqr 6 * (sqr (400 * usaw 2.1)))

csound-expression

Klangbeschreibung durch algebraischen Ausdruck

```
hall 0.5 (usqr 6 * (sqr (400 * usaw 2.1)))
```

- verwendet:
 - Operatoren aus Csound-API (VCO, VCF, ...)
 - (Spannungs-)Steuerung durch passende Argumente
 - Haskell (Typen, Funktionen, *, map, ...)
- wird in Csound-Ausdruck kompiliert, (ansehen mit

```
( renderCsd $ hall ...) >>= putStrLn)
```

 dieser wird an Csound-Server gesendet, dieser führt Simulation durch (berechnet Amplitudenverlauf)

CE-Beispiel: Additive Synthese

Fourier-Darstellung der Rechteck-Schwingung

```
let f = 300
in sum $ map (\k -> (osc $ k * f) / k )
$ map fromIntegral [1, 3 .. 9]
```

- das funktioniert, weil...
 - k und f den Typ Sig haben (nicht Zahl!)
 - für Sig die Addition definiert ist (instance Num Sig)
- Klang vergleichen mit sqr f, obere Grenze (9) variieren
- Übung: desgl. für Sägezahn-Schwingung,
 für Summe vieler harmonischer S. mit zufälliger Frequenz

weitere Csound/CE-Beispiele

- Wind https://hackage.haskell.org/package/csound-catalog-0.7.2/docs/Csound-Catalog-Wave.html#v:mildWind
- Schlagzeuge (Hans Mikelson) https://hackage. haskell.org/package/csound-catalog-0.7.2/docs/Csound-Catalog-Drum-Hm.html
- Glocke (noiseBell) u.a. https://hackage.haskell.org/package/csound-catalog-0.7.2/docs/Csound-Catalog-Wave.html#v:noiseBell

Theremin

- Lev (Leon) Termen, 1922, Rußland
- wird berührungslos (!) gespielt, Prinzipien:
 - durch Handbewegung wird Kapazität eines Kondensators in einem HF-Schwingkreis (170 kHz) (!) geändert, dadurch die Frequenz der Schwingung
 - Tonhöhe: vom HF-Summensignal hört man nur die (niederfrequente) Differenzfrequenz zu einem zweiten (nicht verstimmten) Schwingkreis,
 - vgl.dac \$ osc 30000 + osc 30300
 - Lautstärke: HF-Bandpaß und Gleichrichtung erzeugt Steuerspannung für VCA
- Hörbeispiel: Captain Beefheart: Electricity, 1967

Schnittstellen für Live-Spiel: MIDI

MIDI-Signalquelle

- reelles Keyboard: https://github.com/ spell-music/csound-expression/issues/51
- virtuelles Keyboard:

```
vdac $ midi $ \ m -> return $ osc $ sig $ cpsmidi
```

• Signaturen:

```
midi :: Sigs a => (Msg -> SE a) -> SE a
cpsmidi :: Msg -> D
sig :: D -> Sig
osc :: Sig -> Sig
vdac :: RenderCsd a => a -> IO ()
return :: Monad m => a -> m a
```

Schnittstelle für Live-Spiel: GUI

Verwendung von GUI-Elementen aus Csound:

```
dac $ do
  (g,f) <- slider "f" (expSpan 20 2e4) 440
  panel g; return $ osc f</pre>
```

Signaturen:

```
slider :: String -> ValSpan -> Double -> Source Sig
expSpan :: Double -> Double -> ValSpan

type Source a = SE (Gui, Input a); type Input a = a
panel :: Gui -> SE (); osc :: Sig -> Sig
dac :: RenderCsd a => a -> IO ()
```

mehrere Element kombinieren durch

```
hor, ver :: [Gui] -> Gui
```

Übungen

- csound-expression:
 - Types in Csound-Expression:

```
https://www.imn.htwk-leipzig.de/
~waldmann/etc/untutorial/ce/
```

Tonerzeugung

```
https://gitlab.imn.htwk-leipzig.de/waldmann/cm-ws18/tree/master/kw46/data
```

Benutzt wurden nur: osc, usaw, usqr, white, mul, at, (+), (-), (*), hall, fvdelay

- zum Vergleich Hörbeispiel: Autechre: Perlence (Album: Quaristice, 2008)
- Tonerzeugung: Aufgaben von voriger Woche

- GUI benutzen

https://github.com/spell-music/ csound-expression/blob/master/tutorial/ chapters/FxFamily.md#ui-stompboxes

Harmonielehre

Motivation, Plan

- bisher: Geräusche,
 Töne (Grundfrequenz, Obertöne, Spektren)
- heute: welche Töne klingen gut
 - zusammen (in Akkorden),
 - nacheinander (in Melodien)?
- später:
 - Folgen von Akkorden (Kadenzen),
 - Führung mehrerer Stimmen (Kontrapunkt)

und Notation dafür (algebraisch, grafisch – Partituren)

Klassische Literatur

 Hermann von Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik, Vieweg 1863.

```
https://reader.digitale-sammlungen.de/de/fs1/object/display/bsb10598685_00366.html
```

• (von H.H. zitiert) Leonhard Euler: *Tentamen novae theoriae Musicae*, Petropoli, 1739.

```
http://eulerarchive.maa.org/pages/E033.html,
vgl. Patrice Bailhache: Music translated into Mathematics,
https://web.archive.org/web/20050313140417/http:
//sonic-arts.org/monzo/euler/euler-en.htm
```

 Hugo Riemann: Katechismus der Harmonielehre, 1890 https:

//archive.org/details/katechismusderh00riemgoog/

Die Naturtonreihe

- bei schwingender Saite, schwingender Luftsäule kommen neben Grundton f ganzzahlige Obertöne vor, bilden die Naturtonreihe $f, 2f, 3f, 4f, 5f, \dots$
- einzelne Obertöne lassen sich durch passende Spielweise betonen (isolieren) (z.B. Flageolett)
 Bsp: Canned Heat: On the Road Again, 196?.
 (Flageolett-Töne im Intro)
- die Naturtonreihe bis 15f reduziert (durch Halbieren) 1, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, 2 c d e \approx f g \approx ab \approx bb, \approx b c' 11/8: das Alphorn-Fa
- wie stimmt man Instrumente mit mehreren Saiten?

Konsonanz

- wie stimmt man Instrumente mit mehreren Saiten f, g, \ldots g nicht als Oberton von f, sondern wir wollen neue Töne. Welche?
- Töne wie z.B. 300 Hz, 315 Hz
 - klingen nicht gut zusammen (sondern rauh, dissonant)
 - das Ohr nimmt die Schwebung (mit 15 Hz) wahr
- Schwebungen zw. 10 Hz und 40 Hz sind unangenehm (nach Helmholtz: 33 Hz ist am schlimmsten)
 konsonante Töne haben keine solchen Schwebungen

(Vermeiden von) Schwebungen

- f, g konsonant :=_{def} keine Schwebung geringer Frequenz zwischen Obertönen von f und Obertönen von g.
- $S(f,g) := \min\{|a \cdot f b \cdot g| : a,b \in \mathbb{N}, af \neq bg\}$

Bsp: $S(300, 315), S(270, 375), S(270, 360) \dots$

• Satz: S(f, g) ist der ... von f und g.

(Begriff und Berechnung bekannt aus 1. Semester)

Konsonanz

- f, g konsonant, wenn gcd(f, g) groß . . .
 - absolut: gcd(f, g) > 40Hz
 - relativ: $gcd(f, g) / max(f, g) \rightarrow groß$
- Hör-Eindruck: (80, 120) gegenüber (480, 520) spricht für die relative Definition.
- Def: $R(f,g):=\gcd(f,g)/\max(f,g)$ hier $\gcd(f,g)$ auch für $f,g\in\mathbb{Q}$ definiert als $\min_{a,b}\{af-bg\}$
- Aufg: Bestimme $1=f_0 < f_1 \ldots < f_k=2$ mit $W(f)=\min\{R(f_i,f_j) \mid 0\leqslant i< j\leqslant k\}$ maximal
 - Bsp: k = 3. Für 1, 4/3, 5/3, 2 ist W(f) = ..., geht besser?

Die Töne nach Pythagoras

- nach Pythagoras (ca. 500 v.Chr.) konstruiere Tonmenge
 - beginne mit 1 (Grundfrequenz)
 - multipliziere mit 3/2,
 - multipliziere mit 1/2, falls > 2

- pentatonische Skala: die ersten 5 Töne dieser Reihe, nach Frequenzen geordnet c,d,e,g,a
 - Bsp: The Monochrome Set: *Iceman*, Album: Spaces Everywhere, 2015. (Intro, Skala von d: $\{d, e, f\sharp, a, b\}$)
- diatonische Skala: die ersten 7 Töne dieser Reihe geordnet $g,a,b,c,d,e,f\sharp$

Die Töne nach Pythagoras

• (bisher) aufsteigend $c, g, d, a, e, b, f\sharp, c\sharp, g\sharp, d\sharp, a\sharp, e\sharp, b\sharp, f\sharp\sharp, \dots$

• absteigend: beginne mit 2, mult. mit 2/3, ggf. mit 2

vereinige die jeweils ersten 7 Töne, ordne.

$$c,d\flat,d,e\flat,e,f,g\flat,f\sharp,g,a\flat,a,b\flat,b,c'$$

Abstände sind

 $2^8/3^5 \approx 1.053$ (zw. b und c'), $3^7/2^{11} \approx 1.068$ (zw. $b \nmid$ und b), sowie einmal $3^{12}/2^{19} \approx 1.013$

Eigenschaften der Stimmungen

die pythagoreische Reihe enthält 12 exakte 3:2

$$g \triangleright d \triangleright d \triangleright a \triangleright e \triangleright d \rightarrow b \triangleright f \rightarrow c \rightarrow g \rightarrow d \rightarrow a \rightarrow e \rightarrow b \rightarrow f \sharp$$

- schließt nicht: $1 \neq (3/2)^{12}/(2/1)^7$ (pythagoreisches Komma)
- Konsonanzen aus der Naturtonreihe fehlen, z.B. 4:5:6. angenähert durch $c:e:g=1:\frac{81}{64}:\frac{3}{2}$
 - der Fehler $\frac{81}{64}/\frac{5}{4}$ ist das diatonische Komma
- reine Stimmung: 4:5:6 für spezielle Akkorde:
 Tonika c,e,g, Subdominante f,a,c, Dominante g,b,d.
- gleichtemperierte St.: das pythagoreische Komma wird geschlossen, d.h., g:c = $2^{7/12} \approx 1.4983$

Die diatonische Skala

 $\bullet \ \mathsf{mit} \ f = 2/3, g = 3/2 \cdot c, d = 9/8 \cdot c, \ldots$

$$c\stackrel{T}{-}d\stackrel{T}{-}e\stackrel{S}{-}f\stackrel{T}{-}g\stackrel{T}{-}a\stackrel{T}{-}b\stackrel{S}{-}c'$$

die Abstände sind: T: Ganzton, S: Halbton

- hiervon sind die Intervallbezeichnungen abgeleitet:
 Sekunde, Terz, Quarte, Quinte, Sexte, Septime, Oktave.
- große Terz (2T) $c-e,\ldots$, kleine Terz (T+S): $e-g,\ldots$
- der *Modus* beschreibt eine zyklische Verschiebung:
 - ionisch (Dur): c, d, \ldots ,
 - äolisch (Moll): a, b, \ldots

Akkorde (Dreiklänge)

- Grundformen (konsonant):
 - Dur (große Terz, kleine Terz) $C = \{c, e, g\}$ in C-Dur-Skala enthalten: C, F, G
 - Moll (kleine Terz, große Terz) $C^- = \{c, e \triangleright, g\}$ in C-Dur-Skala enthalten: D^-, E^-, A^-
- Modifikationen (dissonant):
 - vermindert: (kleine, kleine) $C^0 = \{c, e\flat, g\flat\}$ in C-Dur-Skala enthalten: B^0
 - vergrößert: (große, große) $C^+ = \{c, e, g\sharp\}$ nicht in C-Dur-Skala enthalten.

Akkorde (Vierklänge)

- Dreiklang plus Septime (kleine oder große)
- Bsp: $C^7 = \{c, e, g, b \}, C^{\mathsf{maj7}} = \{c, e, g, b\}$
- skalen-eigene Vierklänge:

$$\begin{split} C^{\mathsf{maj7}} &= \{c, e, g, b\}, D^{-7} = \{d, f, a, c\}, \\ E^{-7}, F^{\mathsf{maj7}}, G^{-7}, A^{-7}, B^{-7(\flat 5)} \end{split}$$

- simple Realisierung in electribe 2:
 - Dur-Skala, 4 Noten pro Akkord (Grundton, +2, +4, +6), da kann überhaupt nichts schief gehen, . . .
 - auch bei "frei improvisierter" Melodie nicht (XY-Pad: X ist Tonhöhe (aus Skala), Y ist Arpeggio)
 - das klingt aber doch beliebig,
 woher kommt die musikalische Spannung?

Aufgaben

- bestimmen Sie die Frequenzverhältnisse für C-Dur, d-Moll und e-Moll in der C-Dur-Skala bei Stimmung
 - diatonisch
 - rein
 - gleich temperiert und vergleiche Sie akustisch (csound-expression)
- Konstruktion der chromatischen Töne nach Paul Hindemith (Unterweisung im Tonsatz, 1937):
- (a) zu jedem Ton aus der Obertonreihe des Grundtons (c) werden mögliche Grundtöne bestimmt. Bsp: $5 \cdot c = 4 \cdot ?$. Dabei Multiplikation mit $1 \dots 6$, Division durch 1, (2), 3, (4), 5, mit Identifikation von Oktaven.

- Welche Töne entstehen aus c?
- (b) Dieser Vorgang wird für jeden der entstandenen Töne wiederholt.
 - Welche neuen Töne enstehen? Sind die Abstände gleichmäßig (oder fehlen noch Töne)? Vergleich mit pythagoreischer Skala.
- 3. was hat H. Helmholtz auf S. 291f. gerechnet/gezeichnet? Rekonstruieren Sie die "einfachste mathematische Formel", erzeugen Sie daraus die Diagramme, vergleichen Sie mit denen im Buch
- 4. was hat L. Euler gerechnet? (Helmholtz S. 349, Fußnote) Überführen Sie die dort zitierte rekursive Definition der Stufenzahl in eine explizite Formel.

Bestimmen Sie die Stufenzahl der Akkorde aus der 1. Aufgabe.

Wo steht die Definition im Originaltext von Euler?

- 5. mit csound-expression oder alsa-modular-synthesizer (Module: CV: Random, Quantizer)
 - Akkorde (Dreiklänge, Vierklänge) erzeugen.
 - Akkorde aus einer Skala zufällig aneinanderreihen,
 - dazu eine zufällige Melodie aus dieser Skala
- 6. zur Stimmung der Gitarre:
 - man kann die unteren (tiefen) Saiten so stimmen: Saite mit Flagoelett bei 1/4 = nächst-höhere Saite mit Flageolett bei 1/3.

Welches Intervall ist das? Wenn man bei tiefem E

beginnt und alle Saitenpaaare so stimmt, welcher Ton ist dann auf der 6. (höchsten) Saite?

Das Intervall zwischen 4. und 5. Saite wird bei üblicher Stimmung um einen halben Ton verringert.

• Es werden gern auch abweichende Stimmungen verwendet, vgl. http://www.sonicyouth.com/mustang/tab/tuning.html Warum?

Bsp: Sonic Youth: Hyperstation, Album: Daydream Nation (1988)

Das Bild auf der Hülle ist https://www.gerhard-richter.com/en/art/paintings/photo-paintings/candles-6/candle-5195/

 Wie ist die Gitarre im Intro von On the Road Again gestimmt?

Der 4. Ton bleibt liegen, wird bei Beginn des Themas verschoben. Wohin, warum? in csound-expression nachbauen! Spezifikation von Tonfolgen vgl.

```
notes = fmap temp $ fmap (220 * ) [1, 5/4,
q = mel [mel notes, har notes]
dac $ mix $ sco oscInstr q
https://github.com/spell-music/
csound-expression/blob/master/tutorial/
chapters/ScoresTutorial.md#
functions-for-sequential-and-parallel-compared
```

Algebraische Komposition

Einleitung

- klassisch: Musikstück repräsentiert durch Partitur,
 - Ton repräsentiert d. Note, bezeichnet Tonhöhe, -dauer
 - Tempo, Klangfarbe, Lautstärke
 - * durch weiter Annotationen spezifiziert
 - * oder nicht, d.h., dem Interpreten überlassen
 - Komposition:
 - Noten nebeneinander bedeutet Töne nacheinander
 - Noten (Zeilen) übereinander: Töne (Stimmen) gleichzeitig
- jetzt: Musikstück repräsent. d. (abstrakten Syntax-)Baum

Literatur, Software

• Paul Hudak, Tom Makucevich, Syam Gadde, Bo Whong: Haskore Music Notation - An Algebra of Music, JFP 1995, http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.36.8687

Partitur kompiliert zu MIDI-Strom, der von Hard- oder Software-Synthesizer interpretiert wird

 Anton Kholomiov: Csound-Expression Tutorial - Scores, https://github.com/spell-music/ csound-expression/blob/master/tutorial/ chapters/ScoresTutorial.md

Partitur wird durch Csound-Instrumente interpretiert, P. kann Csound-spezifische Elemente enthalten

Partituren

```
• data Score
   = Note Pitch Duration
     Rest Duration
     Seq [ Score ]
     Par [ Score ]
     Use Instrument Score
• c = 0 :: Pitch; cis = 1 :: Pitch, d = 2 ::
 q = 1/4 :: Duration; o = 1/8 :: Duration; .
 s :: Score
 s = Use Piano
   $ Seq [ Note c q, Rest o
         , Par [ Note e o, Note q o ] ]
```

Partitur-Beispiel

```
• minor :: Pitch -> Duration -> Score
 minor \times d =
   Par [ Note x d, Note (x+3) d, Note (x+7) d]
 bass =
   Seq [ Note e (3*q) , Note b q, Note (b-12) q ]
 chords = Seq [ Rest o, minor e o
   , Rest q, minor e q , Rest q, minor b q ]
 score = Par
   [ Seq $ replicate 4 [ bass, chords ]
   , Seq [Rest (3*q), Note (b-12) o
     , Note d o, Note e o, Note g o, Note bes o, ...
```

• benutzerdefinierte Namen (bass), Funktionen (minor), Standard-Funktionen (replicate), Typisierung

Partitur und Interpretation

• data Event =
 Event Time Instrument Pitch Duration'
type Performance = [Event]

Startzeitpunkt und Dauer in Sekunden, Liste schwach monoton steigend bzg. Startzeitpunkten

```
• perform :: (Time, Instrument, Tempo)
   -> Score -> (Performance, Time)
perform (start, inst, temp) s = case s of
   Rest d -> ( [], start + temp * d )
   Note p d -> ( [ Event start inst (temp * d) ], start
   Seq2 x y ->
   let (xs, mid) = perform (start, ...) x
        (ys, end) = perform (mid , ...) y
   in (xs <> ys, end)
```

Operationen auf Partituren

sequentielle, parallele Komposition:

```
Seq, Par :: [Score] -> Score
```

Transposition (Tonhöhen-Verschiebung):

```
Transpose :: Pitch -> Score -> Score
```

Tempo-Skalierung

```
Scale :: Rational -> Score -> Score
```

- dabei immer zwei Möglichkeiten: Operation ist . . .
 - reifiziert (= verdinglicht), d.h., Konstruktor im AST)
 - interpretiert, d.h., beliebige Funktion von AST nach AST

```
scale :: Rational -> Score -> Score
scale r s = case s of
Note p d -> Note p (r * d); ...
```

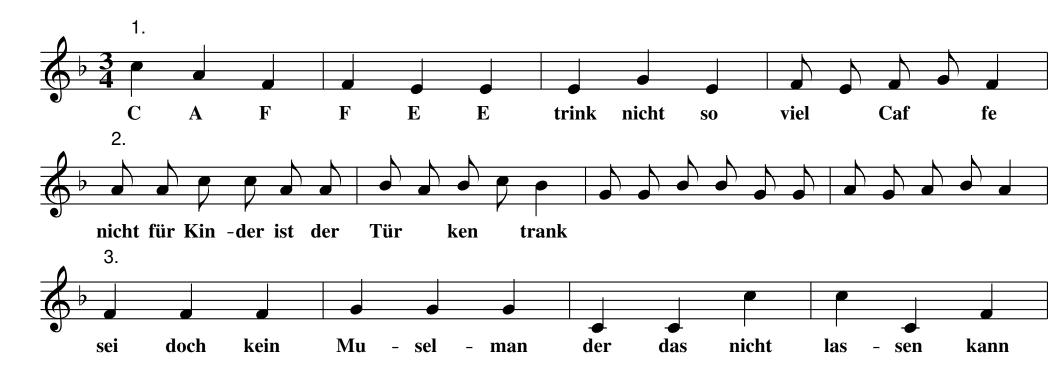
Eigenschaften der Operationen

für zweistellige Versionen der Kompositionen

```
seq2, par2 :: Score \rightarrow Score \rightarrow Score seq2 x y = Seq [x,y]; par2 x y = Par [x,y]
```

• seq2 ist semantisch assoziativ: für alle p, x, y, z

neutrales Element? kommutativ? Desgl. für par2


- gelten Distributiv-Gesetze? (Nein).
- U: wann sind par2 (seq2 a b) (seq2 c d) und seq2 (par2 a c) (par2 b d) semantisch gleich?

Historische Formen der Mehrstimmigkeit

- Cantus Firmus (feststehende Melodie, die anderen Stimmen sind Verzierung)
- Kontrapunkt (Note gegen Note): Vorschriften zur Konstruktion der Begleit-Stimmen, u.a.
 - Konsonanzen zu bestimmten (schweren) Zeitpunkten
 - keine Parallelen (gleichmäßiges Auf- oder Absteigen)
- Fuge (Flucht, die Stimmen fliehen voreinander) alle
 Stimmen sind aus einem Thema konstruiert durch
 - zeitlichen Versatz (Kanon), zeitliche Spiegelung
 - Versatz der Tonhöhe, Skalierung des Tempos, . . .
- Kadenzen (Akkordfolgen) mit untergeordneten Stimmen

Kanon

- eine Stimme wird mehrfach zeitlich versetzt
- Beispiel: Karl Gottlieb Hering (1766-1853): CAFFEE

• Übung: 1. Harmonien bestimmen, 2. programmieren

Fuge

- eine anspruchsvolle Form des Kontrapunktes. alle Stimmen sind aus einem Thema konstruiert durch
 - zeitlichen Versatz (wie im Kanon)
 - Versatz der Tonhöhe
 - zeitliche Spiegelung
 - Tonhöhen-Spiegelung
 - Skalierung des Tempos
- Johann Sebastian Bach (1685–1750): Die Kunst der Fuge, Contrapunctus XV - Canon per Augmentationem in Contrario Motu, (Solist: Pierre-Laurent Aimard, 2008)

```
http://www.mutopiaproject.org/ftp/BachJS/BWV1080/contrapunctusXV/
```

• Ü: Operatoren in Partitur erkennen, implementieren

Akkorde (Ton-Inhalt)

Grundformen: Dur und Moll

```
major x d =
Par [ Note x d, Note (x+4) d, Note (x+7) d]
minor x d =
Par [ Note x d, Note (x+3) d, Note (x+7) d]
```

mit Septime (kleiner, großer)

```
major7 x d = Par [ Note x d, Note (x+4) d, Note (x+7) d, Note (x+10) major7maj x d = Par [ Note x d, Note (x+4) d, Note (x+7) d, Note (x+11)
```

weitere Varianten durch Umstellen (anderer Grundton);
 Hinzufügen, Ändern, Weglassen von Tönen

Die Kadenz

- lateinisch cadere = fallen
- die Voll-Kadenz (Quinten abwärts) in C-Dur:

- verkürze, ersetze $B^0=\{b,d,f(,a)\}$ durch $G=\{g,b,d(,f)\},$ ergibt die Kadenz: C,F,G,C=T,S,D,T
- Tonika (1,3,5), Dominante (5,7,9), Subdominante (4,6,8),
- Dur: T = (c, e, g), S = (f, a, c), D = (g, b, d),
- Moll: $t = (c, e\flat, g)$, $s = (f, a\flat, c)$, $d = (g, b\flat, d)$

Funktions-Harmonik

- Betrachtung der Akkorde nach ihrer (vermuteten, häufigen) Funktion in musikalischer Phrase.
 nach Hugo Riemann (1849–1919):
 - T These, S Antithese, D Synthese.
- in einer Kadenz können Akkorde durch Parallelen vertreten werden
- die Parallelen (mit gleicher großer Terz)

$$Tp=(-1,1,3)=(a,c,e),\,tP=(3,5,7)=(e\flat,g,b\flat),$$
 entsprechend Dp,dP,Sp,sP

- The Beatles: Penny Lane: T, Tp, Sp, D (C, Am, Dm, G)
- harmonische Analyse einer Stelle aus Bach: BWV 268

Vermischte Dokumente zur Harmonielehre

• Über Hugo Riemann, von dessen Sohn Robert:

```
http://www.hugo-riemann.de/
```

Kritik an Riemann durch Heinrich Schenker (1868–1935)
 https:

```
//web.archive.org/web/20120403032916/http:
//www.schenkerdocumentsonline.org:
80/profiles/person/entity-000712.html
```

 Kritik an einer Kritik an Schenkers Theorie der Urlinie https:

```
//web.archive.org/web/20160731145955/http:
//schenkerdocumentsonline.org/documents/
other/OJ-21-24 1.html
```

Kadenzen in der Popmusik

- Kadenz T S (T) D T
- Beispiele: tausende, u.a. Beach Boys: Little Honda, 1964 (Version von Yo La Tengo, 1997)

Strophe: DDDD|GGDD|AADA

- The Jesus and Mary Chain: *Upside Down*, 1984 (auf Creation Records). Strophe: $4 \cdot (GGGC) \cdot 4 \cdot C \cdot 4 \cdot G$
- Beatles: Tomorrow Never Knows, 1966.
- Lou Reed: "One chord is fine. Two chords is pushing it.
 Three chords and you're into jazz."
- Thelonius Monk: Round Midnight, 1944

– Typeset by Foil T_EX –

Übungen

- 1. zu Folie "Partitur und Interpretation":
- (a) Warum "schwach monoton", nicht stark?
- (b) Welche Rechnung muß im Zweig Par2 x y -> stattfinden? Wie werden die Teilresultate verknüpft?
- (c) Welches ist der abstrakte Datentyp für [Event] (welche Operationen gehören zur API)? Welche effiziente Implementierungen dafür kennen Sie?
- 2. Fragen von Folie "Eigenschaften der Operationen"
- 3. zu Bach: Contrapunktus XV (canon per augmentationem in contrariu motu)
- (a) Bestimmen Sie die globale zeitliche Struktur der

Komposition.

- Der 1. Takt der 1. Stimme erscheint (gedehnt und gespiegelt) in Takt 5 und 6 der 2. Stimme. Wo noch? Was zeigt der Trennstrich nach Takt 52 an?
- (b) Bestimmen Sie die Tonhöhen-Abbildung (Spiegelung) von erster zu zweiter Stimme.

Lesehilfe: Der Violin-Schlüssel bezeichnet das G (der Kringel, zweite Notenlinie von unten), der Baß-Schlüssel bezeichnet das F (der Doppelpunkt, zweite Notenlinie von oben)

- Programmieren Sie den CAFFEE-Kanon (3 Stimmen, jede mit eigenem Instrument).
- (a) Ergänzen Sie https:
 //gitlab.imn.htwk-leipzig.de/waldmann/

cm-ws18/blob/master/kw47/Caffee.hs

Beschreibung der Bibliotheks-Funktionen:

```
https://github.com/spell-music/
csound-expression/blob/master/tutorial/
chapters/ScoresTutorial.md
```

- (b) Benutzen Sie eine Darstellung (d.h., Unterprogramme), die die lokale Strukur ausnutzt, z.B.: zweite Häfte der 2. Zeile ist Transposition der ersten Hälfte. Wir verschieben nicht chromatisch (2 Halbtöne), sondern diatonisch (1 Ton in der F-Dur-Skala).
- 5. Realisieren Sie auf ähnliche Weise eine Voll-Kadenz
- (a) effizient programmieren unter Benutzung der Skalen-Numerierung
- (b) eine dazu passende Melodie programmieren

Hinweis: jede Melodie (aus Skalentönen) paßt

Algorithmische Komposition

Motivation

- klassische Partitur beschreibt das Musikstück extensional (durch Angabe der zu spielenden Töne)
- jetzt: intensional (durch Angabe einer Vorschrift (Algorithmus) zur Bestimmung der zu spielenden Töne)
- z.B. algebraische Ausdrücke (par, seq)
- jetzt auch: randomisierte Algorithmen zur Komposition
- Aufführung durch Maschinen oder Menschen

Geschichte der Alg. Komposition (Beispiele)

- mit Würfeln und Tabellen:
 - Johann Philipp Kirnberger: Der allzeit fertige
 Menuetten- und Polonaisen-Komponist, 1757
 - Carl Philipp Emanuel Bach: Einfall einen doppelten Contrapunct in der Oktave von sechs Tacten zu machen ohne die Regeln davon zu wissen, 1758
- mit Rechenmaschinen
 - Lejaren Hiller, Loenard Isaacson: *Illiac Suite*, 1955
- das Ziel ist hier immer die Nachahmung bekannter Musikstile

Geschichte der Alg. Komposition

- hier geht es um wirklich neue Musik:
- lannis Xenakis: http://iannis-xenakis.org/

 Metastasis, 1955; Buch Formalized Music Thought
 and Mathematics in Music, 1963,
- Gottfried Michael Koenig

http://www.koenigproject.nl/, *Projekt 1* 1964, *Projekt 2* 1966, *Sound Synthesis Program* 1971

RU-Prinzip: inspiriert von der Unwiederholbarkeit von Reihenelementen ("unregelmäßig") einerseits und den gruppenbildenden Multiplikations-reihen ("regelmäßig") andererseits.

Komposition und Constraints

- die Kompositions-Aufgabe: bestimme eine (bestmögliche)
 Partitur, die diese Bedingungen (Constraints) erfüllt:
 - Randbedingungen
 (Anzahl Stimmen, Tonart, Metrum, Anzahl Takte)
 - musikalische Regeln (keine Dissonanzen, Parallelen)
 - ggf. Ähnlichkeit zu Vorlagen
 (Bsp: eine Fuge im Stil von Bach)
 - ggf. Vermeidung der Ähnlichkeit zu Vorlagen (Bsp: eine Fuge, aber anders als die vorige)
- maschinelle Lösung dieser Aufgabe durch
 - exakte Verfahren (vgl. VL Constraint-Programmierung)
 - statistische N\u00e4herungsverfahren (sog. maschinelles Lernen)

Modelle für musikalische Eigenschaften

- Constraint: Häufigkeiten aufeinanderfolgender Töne Modell: stochastischer endlicher Automat (Markov-Prozeß)
- Constraint: Häufigkeiten globaler Strukturelemente Modell: stochastische generative Grammatik
- Constraint: spannendes Verhältnis zwischen mehreren Stimmen

Modell: Zweipersonenspiel

 Constraint: Regelmäßigkeit ohne Wiederholungen Modell: zellulärer Automat, Lindenmayer-System

Algorithmische Komposition und Kreativität?

- wenn die Kompositionsarbeit scheinbar durch einen Computer übernommen wird — welche Rolle haben: der Komponist? der Interpret? der Hörer?
- der kreative Vorgang ist: Komponist schreibt das Programm (wenigstens: wählt Programme aus und stellt die Parameter ein)
- bei live coding (dazu später mehr) ist das ein zentraler
 Aspekt (Publikum sieht den Bildschirm des Komponisten)
- vgl. aber Joseph Schillinger: The Mathematical Basis of the Arts, 1943. (S. 17: fünf Erscheinungsformen der Künste) https://archive.org/details/ TheMathematicalBasisOfTheArtsJosephSchilling

Stochastische Sprachen

- (klassische) Sprache über Alphabet Σ ist Abbildung $L:\Sigma^* \to \{0,1\}$ (die Zweiermenge)
- stochastische Sprache über Σ ist Abbildung $L:\Sigma^* \to [0,1]$ (das Intervall reeller Zahlen)
- $L(w) pprox ext{die Wahrscheinlichkeit, mit der } w \in L$
- Plan: stochastische Sprache für $\Sigma =$ Elementar-Ereignisse (z.B. Noten)
 - so definieren, daß interessante $w \in \Sigma^*$ hohe Wahrscheinlichkeit haben
 - durch endliches Objekt (Automat, Grammatik) repräsentieren

Stochastische Automaten, Markov-Prozesse

- ein endlicher stochastischer Automat A besteht aus:
 - Zustandsmenge Q
 - Initialvektor $I \in (Q \rightarrow [0, 1])$,
 - Transitionsmatrix $T \in (Q \times Q \to [0, 1])$. wobei I stochastischer Vektor $(\sum_{q \in Q} I(q) = 1)$ und T stoch. Matrix (jede Zeile ist stoch. Vektor)
- stochastischer Prozeß erzeugt Wort $w=q_0q_1\dots q_n\in Q^n$: wähle $q_0\in Q$ nach Verteilung I, wähle $q_{k+1}\in Q$ nach Verteilung $T(q_k)$.
- Anwendungen in der Musik: Q = Noten, Q = Akkorde.
- dabei wird aber die globale Struktur (nach Riemann: die Funktion der Akkorde) ignoriert!

Stochastische Grammatiken

- Kontextfreie Grammatik beschreibt Satzbau von natürlichen (und künstlichen) Sprachen und Musik
 Jeder Satz hat Subjekt und Prädikat ≈ jede Kadenz beginnt und schließt mit Tonika.
- stochastische CFG: wie klassisch, zusätzlich zu jeder Variablen l ein Wsk-Vektor \vec{v} über alle Regeln, $[(v_1, l \rightarrow r_1), \dots, (v_n, l \rightarrow r_n)]$
- Bsp: mittlere Wortlänge für $[(1/2, S \rightarrow b), (1/2, S \rightarrow aSS)]$
- Ü: Beziehung stoch-CFG/Markov-Prozesse
 (MP ≈ endlicher Automat = Typ-3-Grammatik ⊆ Typ-2-Grammatik)

Kombination stochastischer Methoden

Donya Quick and Paul Hudak: Grammar-Based
 Automated Music Composition in Haskell,
 http://functional-art.org/2013/quick.pdf,
 Workshop on Functional Art, Music, Modeling and Design
 (FARM)

Lindenmayer-Systeme

D0L-System besteht aus

```
Axiom S \in \Sigma, Funktion \phi : \Sigma \to \Sigma^* mit S \sqsubset \phi(S) F = (0, \{0 \mapsto 01, 1 \mapsto 0\}), \quad G = (a, \{a \mapsto abc, b \mapsto ac, c \mapsto b\})
```

- Aristide Lindenmayer (1925–1989),
 http://algorithmicbotany.org/papers/#abop
- definiert Folge $S, \phi(S), \phi^2(S), \ldots$ mit $i < j \Rightarrow \phi^i(S) \sqsubseteq \phi^j(S)$ d.h. Folge hat Limes $\phi^\omega(S) \in \Sigma^\omega$
- $w_F = 0100101...$, $w_G = abcacbabcbacabc...$
- Satz: w_G ist *quadratfrei*, d.h., enthält kein Teilwort uu.
- Anwendung: Tonfolge konstruiert aus w_G enthält keine benachbarten Wiederholungen

Übung

Algorithmische Komposition

```
Beispiel: http://www.donyaquick.com/
interesting-music-in-four-lines-of-code/.
benutzt Bibliothek Euterpea zur MIDI-Signalerzeugung
(https:
//hackage.haskell.org/package/Euterpea,
http://www.euterpea.com/)
```

- MIDI-Instrument vorbereiten: z.B. qsynth starten, dann in qjackctl: Connect → Alsa: Midi Through mit Fluidsynth verbinden. (Euterpea schickt Noten auf Midi Through.)
- Quelltext laden und abspielen:

```
ghci partitur.hs
playX x2
```

- verwenden Sie die Musik-Operatoren einzeln, ändern Sie die Komposition
- Installation: im Pool schon erfolgt, sonst https: //github.com/sternenseemann/Euterpea2
- 2. Implementieren Sie Steve Reich: Piano Phase (1967).

Aufführung (Peter Aidu, 2006, solo!)

https://archive.org/details/top.09,

Beschreibung: https://en.wikipedia.org/wiki/ Piano_Phase#First_section

3. Stochastische Musik:

https://gitlab.imn.htwk-leipzig.de/

waldmann/cm-ws18/blob/master/kw48/stoch.hs

zufällige Permutation: Implementierung vervollständigen

4. deterministische nichtperiodische Musik

benutzen Sie

https://gitlab.imn.htwk-leipzig.de/waldmann/cm-ws18/blob/master/kw48/dnp.hs

Performing with Patterns of Time Überblick

- Quelle: Thor Magnusson und Alex McLean: P.w.P.o.T,
 Kap. 14 in: Oxford Handbook of Algorithmic Music, OUP
 2018, https://slab.org/publications/
 Software: https://tidalcycles.org/
- algebraische Beschreibung von periodischen Verläufen (Parameter für Klänge), eingebettete (in Haskell) DSL
- Back-end: https://supercollider.github.io/ James McCartney, 1996—
- Tidal benutzt SC zum Abspielen von Samples
- Tidal ist System für live-coding (durch ghci-Kommandos)

- Typeset by FoilT_EX -

Tidal - Beispiel

Sound-Server (supercollider) starten

```
sclang dirt_startup.scd
```

Ghci starten

```
ghci
:script BootTidal.hs
```

Klänge ausgeben

```
d1 $ s "bd [sn sn]"
d2 $ s "[jvbass*2]*2" |*| n "0 1 2 3 4"
hush
```

Grundlagen Tidal (Modell)

- ein Muster m :: Pattern a beschreibt eine periodische Abbildung von Zeit nach a
- elementares Muster: pure x mit Periode 1
- c:: ControlMap Parameter zum Sample-Abspielen s: Verzeichnis, n: Datei-Nummer, gain, delaytime, ...
- Funktionen zum Abspielen:

```
d1, d2, ... :: Pattern ControlMap -> IO ()
• let p = pure $ M.fromList [("s", VS "bd")]
   d1 p
   queryArc p (0,3)
     [(0>1)|s: "bd", (1>2)|s: "bd", (2>3)|s: "bd"]
```

Operatoren auf Mustern: Transformation

• Bsp. verwenden p = run 3, mit queryArc p (0,1)

```
==> [(0>1/3)|0, (1/3>2/3)|1, (2/3>1)|2]
```

Transformation der Werte fmap (\ x -> x+1) p

```
==> [(0>1/3)|1, (1/3>2/3)|2, (2/3>1)|3]
```

• zeitliche Verschiebung (1/3) <~ run 3

```
==> [(0>1/3)|1, (1/3>2/3)|2, (2/3>1)|0]
```

• zeitliche Streckung slow 2 p

```
[(0>2/3)|0, (2/3>1)-4/3|1, 2/3-(1>4/3)|1, (4/3>2)|2
```

Operatoren auf Mustern: Komposition

Muster nacheinander:

```
cat :: [Pattern a] -> Pattern a

cat [p, p] ==>
[(0>1/3)|0, (1/3>2/3)|1, (2/3>1)|2, (1>4/3)|0, (4/5)
```

• fastcat wie cat, aber Resultat auf Länge 1 gestaucht

```
fastcat [p, p] ==> [(0>1/6)|0, (1/6>1/3)|1, (1/3>1/2)|2, (1/2>2/3)|0,
```

• Muster gleichzeitig:

```
fast 3 $ stack [ slow 2 (s "sn"), slow 3 (s "bd") ]
```

stack :: [Pattern a] -> Pattern a

Die Muster-DSL von Tidal

- zusätzlich zur bisher beschriebenen eDSL:
- eine konkrete Syntax für fastcat und stack
- s \$ fromString "bd sn" ist äquivalent zu s \$ fastcat [pure "bd", pure "sn"] mit:set -XOverloadedStrings:s "bd sn"
- in den Strings gilt:
 - Hintereinanderschreiben: fastcat
 - x*3 bedeutet: fastcat \$ replicate 3 x
 - in Klammern [] mit Komma: stack
 - x? bedeutet: degrade x

Bsp: "[[bd sn?]*2, [hc?*2 ho]*4]"

Ungerade Rhythmen

- man kann in Tidal sehr leicht sehr schwierige Rhythmen hinschreiben (z.B., "[[bd*2, sn*3], hc*5]")
 das kann wahrscheinlich kein Mensch spielen und will auch keiner hören (jedoch: Piano Phase)
- welche Rhythmen kommen in der (europ.) Praxis vor?
 4/4 (Polka, Rock'n'Roll), 3/4 (Walzer), Zwiefacher!
- Hörbeispiele
 - Norma Tanega: You're Dead, 1966
 - Lalo Shifrin: Mission Impossible (Theme) 1966
 - Billy Goldenberg: Kojak (Theme) 1973
 - Erich Ferstl: Alpha Alpha (Thema) 1972
 - Paul Desmond (rec. Dave Brubeck): Take Five, 1959

Typeset by FoilT_EX –

Operatoren auf Mustern: Kombination

- das ist die eigentliche Erfindung von Tidal
- Kombination von zwei gleichzeitigen Mustern:
 allgemeinster Fall: Verknüpfung durch beliebige Funktion

```
(,) < > run 2 < * run 3
[(0>1/3)|(0,0),(1/3>1/2)|(0,1),(1/2>2/3)|(1,1),(2/3)
```

häufige Anwendung: Zusammensetzen von ControlMaps

```
s "bd arpy" |+| n (run 3)
(0>1/3)|n: 0.0f, s: "bd"
(1/3>1/2)|n: 1.0f, s: "bd"
(1/2>2/3)|n: 1.0f, s: "arpy"
(2/3>1)|n: 2.0f, s: "arpy"
```

Audio-Effekte in Tidal

- Ausdrucksmittel sind hier (z.B. ggü. csound-expression) absichtlich beschränkt, Schwerpunkt von Tidal ist die Kombination von (zeitlichen) Mustern, nicht von Effekten
- ein globaler Effekt-Weg, Parameter in ControlMap

```
d1 $ sound "sn"
  # delay 0.7 # delaytime (2/3) # delayfeedback 0.7
  # room 0.7 # size 0.9
  # cutoff 400 # resonance 0.7
```

- Parameter sind auch Muster, z.B., size "0.5 0.9"
- durch orbit <string> unabhängige Effektstrecken

```
stack [ .. # orbit "0", .. # orbit "1" ]
```

Beispiel: Tidal von Kindohm (Mike Hodnick)

- Kindohm at International Conference on Live Coding, October 15th 2016, at The Spice Factory, Hamilton, Ontario, Canada. https:
 - //www.youtube.com/watch?v=smQOiFt8e4Q
- vgl. http://iclc.livecodenetwork.org/2015/papers.html, http://iclc.livecodenetwork.org/2016/papers.html
- aktuelles Album: *Mesabi Range* https://nadarecs.bandcamp.com/album/kindohm-mesabi-range

Typeset by FoilT_EX –

Übungen

- Markov-Prozesse (falls Fragen zu autotool-Aufgabe)
- 2. Rhythmen:
- (a) weitere Beispiele für ungerade Takte in der Pop/Rockmusik mitbringen z.B.: Go-Betweens: *Cattle and Cane*, 1983.
- (b) Das Bjorklund-Verfahren, siehe https:
 //tidalcycles.org/patterns.html#bjorklund
 und dort zitiertes Paper von Toussaint.
 Geben Sie eine formale Spezifikation an für "möglichst

gleichmäßige Verteilung von k Ereignissen auf n Zeitpunkte", begründen Sie, daß die angegebene Konstruktion diese Spezifikation erfüllt. Sind diese

- Lösungen eindeutig? Beispiel E(5,8).
- (c) bestätigen Sie die angegebenen Vorkommen von E(k,n) in der Natur, z.B. bei lateinamerikanischen Rhythmen.

Hörbeispiele Bossa Nova: Stan Getz/Joao Gilberto 1964, Quincy Jones: Big Band Bossa Nova 1962; Senor Coconut (Uwe Schmidt, Atom TM): El Baile Aleman, 2000.

- Tidal installieren und starten
- (a) jack richtig configurieren, siehe https://gitlab. imn.htwk-leipzig.de/waldmann/cm-ws18# hinweise-zur-richtigen-konfiguration-von-a
- (b) SuperDirt installieren
- (c) dann SC-Server starten mit

```
sclang superdirt_startup.scd
```

(d) Tidal-Cycles ist installiert, dann ghci

```
:script BootTidal.hs
d1 $ s "bd sn"
hush
```

4. Tidal benutzen

(a) Types in Tidal-Cycles:

```
https://www.imn.htwk-leipzig.de/
~waldmann/etc/untutorial/tc/beachte
insbesondere Semantik von cat
```

(b) für einige Audio-Files

```
(https://gitlab.imn.htwk-leipzig.de/
waldmann/cm-ws18/tree/master/kw49/data)
```

den Tidal-Quelltext erraten. Hinweis: benutzt wurden s "casio:1", fast, speed, rev, every, room

(c) Steve Reich: *Piano Phase* nachbauen.

Hinweis: chromatische Tonfolgen so möglich:

```
s "sine" |+| speed (fmap (\i -> 2**(i/12))
```

(d) Mike Hodnick: Deconstructing D-Code,
 https://blog.mikehodnick.com/
 deconstructing-d-code/

- (e) Antonio Carlos Jobim, Newton Mendonca: *One Note Samba*, Rec. Stan Getz, Charlie Byrd, 1962, LP *Jazz Samba*. Der Stil wurde als *Bossa Nova* bekannt.
 - i. Welche Rolle spielt der festgehaltene Ton (f) im jeweiligen Akkord? $(D^{-7}D^{\flat7}C^{-7}B^{7\flat5})$
 - ii. Programmieren Sie den Rhythmus (Stick ab 1:28 min)

Planung der Abschluß-Projekte

- Ziel: Methoden aus der Vorlesung benutzen, um eine musikalische Wirkung zu gestalten.
- Ideen für Projekte:
 - 1. (Standard: jedes Vorlesungsthema, siehe auch Übungsaufgaben)
 - 2. Verknüpfung von zwei verschiedenen Themen
 - "Hacks", d.h., Verwendung einer Methode/eines Werkzeugs zu einem nicht bestimmungsgemäßen Zweck
 - 4. Verknüpfung mit Themen aus anderer Vorlesung, z.B. Robotik
 - 5. Bezug zu Leipzig, z.B.

- Typeset by FoilT_EX -

- J. S. Bach, H. Riemann,
- Lipsi https:
 //de.wikipedia.org/wiki/Lipsi_(Tanz),
- Musikautomaten https://mfm.uni-leipzig.de/dt/dasmuseum/Publik_6onlinepub.php
- nützliche Software, z.B. autotool-Aufgaben zur Musiktheorie
- Projekt besteht aus Bericht und Vorführung. Je 2 bis 3
 Personen sollen zusammenarbeiten. Bis KW 50
 Gruppen/Themen nennen, bis KW 51 Abstract und
 Gliederung vorlegen. Zu Vorlesungsende abzugeben sind Bericht (PDF) sowie Arbeitsversionen der Quelltexte und Audiodateien. Können bis Vorführung noch überarbeitet werden. Im Bericht sind individuelle Beiträge

- Typeset by Foil T_EX -

zu markieren, pro Person ca. 5 Seiten.

- Bewertet werden
 - 1. Plan: was soll stattfinden, wie soll es wirken?
- 2. Inhalt: Bezug zu Themen, Methoden, Werkzeugen aus der Vorlesung, ggf. durch eigene Recherchen ergänzt
- 3. Form: wissenschaftliches Schreiben, vgl. Simon Peyton Jones: https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/
- 4. Technik/Vorführung: stimmt mit Beschreibung überein, wurde geübt, ohne Verzögerungen präsentiert, Präsentation ist nachvollziehbar (Quelltexte, Befehle, Eingaben/Ausgaben sind live sichtbar)

- Typeset by FoilT_EX -

 Vorführung zu geeigneter Zeit an geeignetem Ort (Beschallungs- und Video-Technik, Getränke, Gäste).
 Vorschläge?

Mathematische Musiktheorie

Inhalt und Methoden

(aus Journal of Mathematics and Music: Aims and Scope)

- The use of mathematical modelling and computation in music theory,
- mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances.
- In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, ...

131

- Typeset by FoilT_EX -

Überblick: Wer macht was?

- Fachverbände, Konferenzen, Zeitschriften
 - Society for Mathematics and Computation in Music http://www.smcm-net.info/
 - Journal of Mathematics and Music
 https://www.tandfonline.com/JMM/
 - Intl. Congress on Music and Mathematics
- Forscher
 - David Clampitt, Ohio State Univ., https://music.osu.edu/people/clampitt.4
 - Guerino Mazzola, Univ. of Minnesota, http: //www.encyclospace.org/CV/mazzola.html
 - Thomas Noll, Esc. Sup. de Musica, Barcelona

Fortgesetze Teilung der Oktave

(meine Notizen zu Gastvortrag von Herrn Dr. Noll)

- – $2=x_0y_0$ mit $x_0=3/2$ (Quinte), $y_0=2/x_0=4/3$ (Quarte) Töne: $c\xrightarrow{x_0}g\xrightarrow{y_0}c'$
 - $x_0 \mapsto y_0 x_1$, mit $x_1 = x_0/y_0 = 3/2 \cdot 3/4 = 9/8$ (Sekunde) Töne: $c \xrightarrow{y_0} f \xrightarrow{x_1} g \xrightarrow{y_0} c'$
 - $y_0 \mapsto x_1 y_1$, mit $y_1 = y_0/x_1 = 2^5/3^3$ (kleine Terz) Töne: $c \xrightarrow{x_1} d \xrightarrow{y_1} f \xrightarrow{x_1} g \xrightarrow{x_1} a \xrightarrow{y_1} c'$ (Pentatonik)
 - $y_1 \mapsto x_1 y_2$, mit $y_2 = y_1/x_1 = 2^8/3^5$ (Halbton) $c \xrightarrow{x_1} d \xrightarrow{x_1} e \xrightarrow{y_2} f \xrightarrow{x_1} g \xrightarrow{x_1} a \xrightarrow{x_1} b \xrightarrow{y_2} c'$ (Diatonik)
 - $x_1 \mapsto y_2 x_2$, mit $y_2 = x_1/y_2 = 3^7/2^{11}$ (Halbton) $c \xrightarrow{y_2} c \sharp \xrightarrow{x_2} d \xrightarrow{y_1} d \sharp \xrightarrow{x_2} e \xrightarrow{y_2} f \dots$ (Chromatik)
- Anwendung: das Intervall [c, f] sieht immer genauso aus wie [g, c'], d.h., Melodien können verschoben werden

Die Stern-Brocot-Darstellung

- vgl. Kapitel 4.5 in Graham, Knuth, Patashnik: Concrete Mathematics, Addison Wesley 1994
- Moritz Stern, Achille Brocot: beginne mit $0/1 < 1/0 (= +\infty)$, zw. benachbarte (p/q) < (p'/q'), füge Med(p/q, p', q') := (p + p')/(q + q') ein.
- 1. Schicht: 0/1, 1/1, 1/0, 2. Schicht: 0/1, 1/2, 1/1, 2/1, 1/0,
 3. Schicht: 0/1, 1/3, 1/2, 2/3, 1/1, 3/2, 2/1, 3/1, 1/0.
- Satz (Ü): es gilt immer gcd(p + p', q + q') = 1
- Satz (Ü): wenn p/q < p'/q' benachbart, dann p'q pq' = 1.
- Ü: wo steht 7/5 (welche Schicht, welcher Pfad)?

Stern-Brocot-Baum, als Zahlensystem

- Baumstruktur: für jeden Knoten y=p/q, seien x < z die Knoten, aus denen y entstanden ist: $\mathrm{Med}(x,z)=y$.
 - Dann Left(y) := Med(x, y), Right(y) := Med(y, z).
- Bsp: y=3/5. Dann x=1/2, z=2/3 (eindeutig!) Left(y)=4/7, Right(y)=5/8
- Satz: jedes $q \in \mathbb{Q}_{>0}$ kommt genau einmal vor.
- Adresse von q als Wort über $\{L,R\}^*$, von 1/1 aus.
 - Bsp: 3/5 = LRL, 4/7 = LRLL, 5/8 = LRLR.
- Adressen irrationaler Zahlen in $\{L,R\}^\omega$

Stern-Brocot und Euklid

 \bullet Bedeutung eines $L,R\text{-Pfades:}\ L=\begin{pmatrix}1&1\\0&1\end{pmatrix},R=\begin{pmatrix}1&0\\1&1\end{pmatrix}$

• Bsp:
$$4/7 = LRLL = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
.

Zeilensummen (gespiegelt) sind 4,7,

Spalten sind 1/2, 3/5 (die Vorgänger von 4/7)

• zu teilerfremden p/q > 0 den $\{L, R\}$ -Pfad bestimmen:

$$f(p,q) := \text{if } p = q \text{ then } \epsilon$$
 else if $p < q \text{ then } L \cdot f(p,q-p) \text{ else } R \cdot f(p-q,q)$

$$f(4,7) = Lf(4,3) = LRf(1,3) = LRLf(1,2) = LRLLf(1,1)$$

Stern-Brocot-Darstellung der Quinte

- $x = \log_2(3/2) \approx 0.585$ (Logarithmus der Quinte)
- Pfad in die Nähe von x ist $LRLL\dots$
 - $f(x, 1) = Lf(x, 1 x) \approx L(0.585, 0.415)$
 - $-f(x, 1-x) = Rf(2x-1, 1-x) \approx X(0.170, 0.415)$
 - $-f(2x-1,1-x) = Lf(2x-1,2-3x) \approx L(0.170,0.245)$
 - $-f(2x-1,2-3x) = Lf(2x-1,3-5x) \approx L(0.170,0.075)$

Die Reste sind jeweils \log_2 von: 0.415 Quarte, 0.170 Sekunde, 0.245 Terz, 0.075 Halbton

- Typeset by FoilT_EX -

Zurück zur Darstellung der Modi

- Matrizen L,R waren Abb. von $\mathbb{N}^2\to\mathbb{N}^2$, jetzt auffassen als Abb. von $\Sigma^{*2}\to\Sigma^{*2}$ für $\Sigma=\{x,y\}$.
- $L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ als $(x, y) \mapsto (x, xy)$,

$$R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 als $(x, y) \mapsto (xy, y)$.

 $\mathsf{Dann}\;(|w|_x,|w|_y)\cdot L=(|wL|_x,|wL|_y)$

Bsp: w = yxy, wL = xyxxy. (2, 1)L = (2, 3).

• TODO: vergleiche mit "Fortgesetzte Teilung der Oktave", es sollten genau diese $\{x,y\}$ -Folgen entstehen.

Übung

- 1. drei Aufgaben von Folie *Die Stern-Brocot-Darstellung*
- 2. wie lautet der Stern-Brocot-Code von e (Basis der natürlichen Logarithmen)?
 - Bestimmen Sie die ersten Stellen (wieviele Stellen können Sie durch Rechnung mit double sicher bestimmen?), vermuten Sie eine Regel.
- 3. welche (irrationale) Zahl hat den Code $(LR)^{\omega}$?
 - Bestimmen Sie die ersten Näherungsbrüche.
 - Geben Sie den numerischen Wert in *Inverse Symbolic* Calculator (Integer Relations Algorithms) ein.
 - Beweisen Sie die dort ausgegebene Behauptung.

4. Die Aufgabe zur Jahreszeit (mit Schneebällen):

auf der Zahlengeraden wird in jeder rationalen Zahl x=p/q ein Kreis mit Radius $1/(2q^2)$ tangential aufgesetzt.

Beweisen Sie: diese Kreise überschneiden sich nie.

Welche Kreise berühren sich? (Beziehung zum Stern-Brocot-Baum formulieren und beweisen.)

Zeichnung: siehe

```
https://gitlab.imn.htwk-leipzig.de/waldmann/cm-ws18/blob/master/kw50/F.hs
```

- Typeset by FoilT_EX -

Samples, Breaks

Überblick

- Def: Sample = Amplitudenverlauf eines Audio-Signals
- Anwendung 1: Optimierung der Synthese
 - Klänge im Voraus synthetisieren, abspeichern,
 - wenn Software-Simulation des physikalischen Systems nicht in Echtzeit möglich ist
 - Bsp: Synclavier (1977, 32 MB Speicher) http: //www.vintagesynth.com/misc/synclav.php
- Anwendung 2: musikalische Aussage
 Audio-Signal wird aus erkennbarer Quelle zitiert:
 - einzelner Klang (eines bestimmten Instrumentes)
 - zusammenhängende Klänge (Teil eines Musikstückes)

Samples in Tidal-Cycles

- Sample als Audio-Datei (wav), wird bei Start von
 Supercollider geladen, siehe auch https:
 //tidalcycles.org/index.php/Custom_Samples
- d1 \$ s "breaks152" spielt das Sample ab
 - in Original-Länge l und -Tempo
 - beginnend zu jeder (!) Tidal-Periode p
 - d.h. auch selbst-überlappend, falls l > p
- stack [fast 4 \$ s "hc" , s "breaks152" # begin 0 # end 0.3 # speed 0.9]

begin und end sind relativ zu l, speed ist relativ zu p

Amen Brother

• The Winstons: Amen Brother, 1969.

(Schlagzeug: Gregory Sylvester Coleman)

- ... most sampled track in the history of music (Quelle?)
 - 198* Hip Hop (Hörbeispiele)
 - 199* Breakbeat (Drum and Bass) (Ü Breakbeat Science)

Übung

Arbeiten mit (eigenen) Samples in Tidal, vgl.

```
https://we.lurk.org/hyperkitty/list/tidal@we.lurk.org/thread/
W27AKWANOWAROPE5FX5M2IPYMRXFHQFZ/
experimentieren Sie mit breaks165, bev (wie angegeben), led (schwierig)
```

- 2. Nick Collins: *Algorithmic Composition Methods for Breakbeat Science*, 2001 https://composerprogrammer.

 com/research/acmethodsforbbsci.pdf
- autotool-Aufgaben zu Euklidischen Rhythmen (gleichmäßige Verteilung von Ereignissen/Zahlen in einem Raster).

Entwickeln Sie eine Theorie für den zweidimensionalen Fall, vgl. https://gitlab.imn.htwk-leipzig.de/autotool/all0/issues/562

(Die Schule des) Rock

Einleitung

- (abendländische) Musik im Laufe der Jahrhunderte:
 - Monophonie → Homophonie → Polyphonie → Kontrapunkt → Kadenzen → . . .
- Unterschiede ...
 - sachlich begründet (Skalentheorie, Musikinstrumente), gesellschaftlich (kirchliche/höfische/bürgerliche Kultur)
- welche Entwicklungen gibt es in der Populärmusik?
 Welche Gründe haben diese?

School of Rock (2003)

- Film, Regie: Richard Linklater, Darsteller: Jack Black,
- 15:09–18 are you gonna teach us anything
 31:20–33 first thing you do when you start a band
- 47:04 das Tafelbild, siehe auch https: //movies.stackexchange.com/questions/9353/ who-wrote-the-school-of-rock-blackboard
- dort als Vorlage zitiert: Reebee Garofalo: marketing trends and stylistic patterns in pop/rock music https: //www.historyshots.com/products/rockmusic

aus Edward Tufte: Visual Explanations: Images and Quantities, Evidence and Narrative, 1997

Bemerkungen zur Schullandkarte des Rock

- beachte: Zappa, Can, Beefheart: Fragezeichen
- die Musikstilbezeichnungen sind Erfindungen von Marketing-Abteilungen von Plattenfirmen
- trotzdem gibt es dort sowohl große Künstler (Bsp: im Soul: Isaac Hayes, Temptations)
 - ...als auch lustige Retortenbands (Glam-Rock : Sweet)
- es fehlen: elektronische Musik (Kraftwerk)
 mglw. außerhalb des vorgegebenen Themas Rock
- es fehlen jedoch wirklich, und das ist schade Ska, Reggae (vorwiegend Jamaica) als Einfluß auf *Punk, New Wave* (England)

Reggae

- Ska (195*), Rocksteady, Reggae (196*)
 in der Karibik, insb. Jamaica (bis 1962 britische Kolonie)
 Melodien und Texte des Blues, Walking Bass,
 Offbeat-betont (4/4-Takt, aber auf 1 ist Ruhe)
 Beispiele Bands: Upsetters, Congos.
- Trennung Vokalisten/Band (Instrumentalisten), modular Produktion von Stücken ohne Gesang (Dub-Version), angereichert durch Sound-Effekte Beispiele Produzenten: King Tubby, Lee Perry
- → England: 2-Tone Ska (Bsp: Specials, Madness)
 Punk (Clash, Ruts, Stranglers), New Wave (Police)

Ökonomie der Rockmusik

- das klassische Modell: Plattenfirma investiert in Künstler (Vorschüsse, Marketing) und lebt vom Verkauf von Tonträgern. Die Künster verdienen dabei wenig.
- das ist spätestens seit 2000 vorbei, weil kaum noch Tonträger verkauft werden. Bands leben von Konzerten.
- Steve Albini: https://thebaffler.com/salvos/the-problem-with-music, 1993.
- Courtney Love: *About piracy and music*, 2000. https://www.salon.com/2000/06/14/love_7/
- Amy X. Wang

```
https://www.rollingstone.com/music/music-features/
how-musicians-make-money-or-dont-at-all-in-2018-706
```

Von der Rockmusik abhängige Märkte

- Hersteller und Händler (Instrumente, Verstärker)
- Dienstleister (Musiklehrer, Club-Betreiber)
- (alternative Finanzierungsquelle) staatliche Kulturförderung (Musikhochschulen, Konzerthäuser, Beauftragung von Werken/Installationen)
- Musikzeitschriften, Bsp: nach 38 Jahren und 384
 Ausgaben wird die Druck-Ausgabe von SPEX eingestellt.
 gegründet in Köln, benannt nach der Band X-Ray Spex
 - F. Spilker: da wurde jede Kleinigkeit erst genommen.
 - ... die Züge, auf die sie gesprungen sind, immer als Rebellion verkauft
 - Thomas Meinecke: Ich wollte da vorkommen!

Übung

- einen Reggae programmieren (eine Blues-Kadenz, aber off-beat betonen)
- einen Rocksong programmieren (gleiche Kadenz, aber den Sound von übersteuerten Gitarren)
- 3. zum zitierten Artikel Steve Albini (1993)

```
vergleiche mit https:
```

```
//www.theguardian.com/music/2014/nov/17/
steve-albinis-keynote-address-at-face-the-r
(2014)
```

Beachten Sie dort auch den letzten Absatz.

Automatische Musik-Analyse Motivation, Überblick

- Synthese: Modell ⇒ Klang, Musikstück
 - Analyse: Modell ← Klang, Musikstück
- Aspekte:
 - Spektrum eines Klangs
 - Tempo, Akkordfolge, Struktur eines Musikstücks
- Anwendungen:
 - Wiedererkennen eines Musikstücks
 - Zuordnung zu Epoche, Stil, Komponist
 - Vorschlagen (bekannter) ähnlicher Stücke
 - Synthese (neuer) ähnlicher Klänge, Stücke
 - Audio-Kompression

Werkzeuge zur Audio-Analyse (Bsp.)

The Vamp audio analysis plugin system

```
https://www.vamp-plugins.org/
sonic-annotator
  -d vamp:vamp-example-plugins:fixedtempo:t
  foo.wav  -w csv --csv-stdout
```

(auch für sonic-visualiser, audacity)

• Centre for Digital Music, Queen Mary Univ. London: QM Vamp Plugins https://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html

vamp:qm-vamp-plugins:qm-barbeattracker, ..:qm-segmenter:segmentation,

..:qm-tempotracker:tempo

Matthias Mauch: Chordino und NNLS Chroma

http://www.isophonics.net/nnls-chroma

vamp:nnls-chroma:chordino:simplechord

Spektral-Analyse (DFT)

- grundsätzlich (Wdhlg): Darstellung einer periodischen Funktion $f:[0,1]\to\mathbb{C}$ als $\sum_{k\in\mathbb{N}}c_k(t\mapsto\exp(2\pi ikt))$
- Anpassung für zeitdiskrete Signale (d.h., Vektoren)

$$x:[0,1\ldots n-1]\to\mathbb{C}$$

Darstellung (Dekodierung)

$$x_t = (1/\sqrt{n}) \sum_{k=0}^{n-1} c_k \exp(2\pi i k t/n)$$

$$x=M\cdot c$$
 mit Matrix $M_{t,k}=(1/\sqrt{n})\exp(2\pi ikt/n)$

• Koeffizientenvektor bestimmen aus $M^{-1}x = c$

Satz:
$$M_{t,k}^{-1} = (1/\sqrt{n}) \exp(-2\pi i k t/n)$$

Bew:
$$(M^{-1} \cdot M)_{p,r} = (1/n) \sum_{q} \exp(-2\pi i p q/n) \exp(2\pi i q r/n)$$

• Kodierung: $c_k = (1/n) \sum_{l=0}^{n-1} x_l \exp(-2\pi i k l/n)$

Anwendung zur Audio-Analyse

- Signal in Blöcke zerlegen
 - (z.B. Samplerate 44.1 kHz, jeder Block 512 Samples, Blocklänge ist dann 12 ms, Blockfrequenz 86 Hz)
- DFT für jeden Block einzeln, ergibt Funktion
 Block-Index × Frequenz-Index → Koeffizient (in ℂ)
 (Spektrogramme in sonic-visualiser)
- Implementierung: $M \cdot c$ (Matrix mal Vektor) schneller ausrechnen unter Ausnutzung der Struktur von M (fast Fourier transf., Cooley und Tukey 1965, Gauß 1805)

```
https://gitlab.imn.htwk-leipzig.de/waldmann/cm-ws18/tree/master/dft
```

Audio Fingerprinting

- Avery Wang: An Industrial Strength Audio Seach Algorithm, ISMIR 2003, http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf
- Musikstück → Spektrogramm → Fingerabdruck (FP)
- Vergleich des FP eines unbekannten Musikstücks mit (vielen) bekannten FP aus Datenbank
- gewünschte FP-Eigenschaften: temporally localized, translation invariant, robust, sufficiently entropic
- Implementierung: Spektrogramm-Spitzen, Ankerpunkte, FP ist Menge der Differenz-Vektoren zu nahen Punkten.
- schnelle Erkennung von Diagonalen im Diagramm (Scatterplot) der Diff.-V. in Anfrage/in Datenbankeintrag

Verlustbehaftete Audio-Kompression

- Original ist Funktion $\mathbb{R} \to \mathbb{R}$, i.A. keine endliche Repräsentation möglich, wird nur erreicht durch:
 - Zeit-Raster durch Abtastung (Sampling) (z.B. 44.1 kHz)
 - Wert-Raster durch Zahlendarstellung (z.B. 16 Bit)
- Platzgewinn durch geringere Samplefreq., ger. Bitbreite.
- bei vorgegebenem Platz: höhere Qualität ist möglich durch Ausnutzung physiologischer Eigenschaften
- MP3, AAC, Opus, ...: Fourier-Transf. → Darstellung der Koeffz. mit zeit- und frequenz-abhängiger Bitbreite

Europ. Broadcasting Union: AC-3, https://www.etsi.org/deliver/etsi_ts/102300_102399/102366/

Parameterbestimmung für Markov-Modelle

- Wdhlg: Markov-Prozeß A mit Zuständen $Q = \{1, \ldots, n\}$
 - gegeben durch Initialvektor $I_A: Q \rightarrow [0, 1]$
 - und stochastische Transitionsmatrix $T_A: Q \times Q \rightarrow [0,1].$ definiert Funktion $f: Q^* \rightarrow [0,1]$
- suchen Verfahren zur Lösung der Aufgabe:
 - gegeben: Wertepaare $g = \{(w_1, y_1), \dots\}$
 - gesucht: $A = (I_A, T_A)$ mit $g(w) \approx f_A(w)$.
- Variante: gegeben: Mengen $P, N \in Q^*$,
 - gesucht: A mit $\forall w \in P : f_A(w) \gg 0$, $\forall w \in N : f_A(w) \approx 0$.
 - Bsp: P: Takte aus Melodien von Bach, N: . . . Beatles.

Parameterbest. durch Gradientenabstieg

- geg.: (differenzierbare) Zielfunktion $f: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ ges.: ein $x \in \mathbb{R}^n$ mit f(x) minimal
- Anwendung: $(I_A, T_A) \mapsto \sum_i (g(w_i) f_A(w_i))^2$ falls min. Wert 0, dann löst A die Aufgabe (vorige Folie)
- Verfahren: bestimme Gradient $\nabla f = (\partial f/\partial x_i)_i$ (durch *automatische Differentiation*,

```
https://www.imn.htwk-leipzig.de/~waldmann/edu/
ss18/ki/folien/#(202))
```

verändere Kandidaten x um $-c \cdot \nabla f$.

- das wird derzeit gern tiefes Lernen oder gar KI genannt.
- für diese Anw.: I_A und Zeilen von T_A stochastisch: Ansatz J beliebig, $I_p = J_p^2/(\sum_q J_q^2), \ldots$

Versteckte Markov-Modelle

- stochastischer Automat A=(I,T) mit Zuständen Q mit stoch. Ausgabe-Matrix $O:Q\times\Sigma\to[0,1]$
- definiert Funktion (Wsk.) $h: \Sigma^* \to [0,1]$

$$h(w) = \sum_{q_1...q_k \in Q^{|w|}} f_A(q_1...q_k) \cdot O(q_1, w_1) \dots O(q_k, w_k)$$

- Q : Laute einer natürlichen Sprache
 - A : Häufigkeit von Laut-Folgen in Menge von Wörtern
 - Σ : Merkmals-Vektoren von Spektrogramm-Abschnitten
 - h: Realisierung von Lauten
- Aufgaben (allgemein):
 - geg: $A,O,w\in\Sigma^*$, ges.: der größte Summand in $\Sigma_{q_1...q_k}$
 - geg: Wertepaare aus h, ges.:A, O

Bestimmung harmonischer Strukturen

 José Pedro Magalhães, W. Bas de Haas: Functional Modelling of Musical Harmony, ICFP 2011

```
https://github.com/haas/harmtrace
```

"Given a sequence of chord labels, the harmonic function of a chord in its tonal context is automatically derived."

- Spektral-Analyse → chord labels, diese jedoch fehlerbehaftet. Wie reparieren?
- benutze Baumstruktur, beschrieben durch Grammatik und fehlerkorrigierenden Parser (Swierstra 2009)

```
https://hackage.haskell.org/package/
uu-parsinglib
```

• harmtrace parse -g pop -c "C:maj C:maj F:maj G:maj

Übung

 Diskutieren Sie das Geschäftsmodell (wer bezahlt womit wofür?) von kommerziellen Musikerkennungsdiensten.
 Siehe Abschnitt 1 des zitierten Artikels von Wang (2003).

Was steht im 1. Absatz von Abschnitt 3.3?

Diskrete Fourier-Transformation:

```
https://gitlab.imn.htwk-leipzig.de/
waldmann/cm-ws18/tree/master/dft
```

Überprüfen Sie experimentell und beweisen Sie:

```
M \cdot M^{-1} = Einheitsmatrix
```

Ändern Sie cm-ws18/dft/Main, so daß das Rastermaß für Koeffizienten geringer und hoher Frequenzen

unterschiedlich eingestellt werden kann.

Extremfall: Koeffz. ab einer gewissen Grenzfrequenz (d.h., ab einem gewissen Index, z.B. halbe Fensterbreite) durch 0 ersetzen.

Ton- und Akkord-Analyse:

ausprobieren, Ausgabe von chordino als Eingabe für Sequencer verwenden

```
siehe https://gitlab.imn.htwk-leipzig.de/
waldmann/cm-ws18/blob/master/README.md#
vamp-plugins-sonic-visualiser-sonic-annotat
```

• Beispielprogramm zur Bestimmung eines Markov-Modells https://gitlab.imn.htwk-leipzig.de/waldmann/cm-ws18/tree/master/learn-markov

Audio-Routing und -Bearbeitung

Motivation, Überblick

- allgemein: Betriebssystem ist Schnittstelle zwischen Software (Anwendungsprogrammen) und Hardware
- speziell hier: zwischen
 - Audio-Software (Synthese, Filter, Recorder)
 - Audio-Hardware (Soundkarte)
- Beispiel: Linux JACK (Audio Connection Kit):
 - Prinzipien (routing, "real time" audio plugins)
 - systemnahe Anwendungen, Beispiele:
 - SooperLooper
 - Ardour DAW (digital audio workstation)

JACK (Audio Connection Kit)

Autoren: Paul Davis et al.,

```
http://jackaudio.org/
```

zur Verbindung von Echtzeit-Audio- und MIDI-Anwendungen untereinander und mit Hardware

• Prinzip: jede Anwendung registriert einen *Callback* (eine Prozedur) beim Jack-Serverprozess,

diese Prozedur realisiert die Verarbeitung eines Sample-Fensters (z.B. 1024 Samples bei 48 KHz)

der Server ruft Callbacks rechtzeitig auf, mit passenden Sample-Arrays (für die deklarierten Ein- und Ausgabe-Ports)

Beispiel-Anwendungen mit JACK

https://gitlab.imn.htwk-leipzig.de/

waldmann/cm-ws18/tree/master/jack

main = do
 withPort client "input" \$ \input ->
 withPort client "output" \$ \output ->
 withProcess client (process client input output)
process client input output nframes = do
 inArr <- JA.getBufferArray input nframes</pre>

benutzt

https://hackage.haskell.org/package/jack

outArr <- JA.getBufferArray output nframes ;

vgl. https: //github.com/jackaudio/example-clients

Audio-Plugins

- Beispiel: der LV2-Standard http://lv2plug.in/
- Plugin besteht aus
 - Code zur Audio-Verarbeitung (vgl. Jack-Client)
 - Metadaten für
 - Schnittstellenbeschreibung (Mono, Stereo,...)
 - Steuerungsmöglichkeiten (Parameter, Bereiche, Defaults) → automatische Konstruktion einer GUI
- einfaches Beispiel: http://lv2plug.in/git/cgit.cgi/lv2.git/tree/plugins/eg-amp.lv2
- vgl. https://github.com/calf-studio-gear/calf/blob/master/src/modules_delay.cpp

Digital Audio Workstations

- Aufgaben:
 - Aufnahme (mehrere Spuren, sowohl gleichzeitig als auch nacheinander)
 - Bearbeitung je Spur (Effekte; aber auch Zerschneiden und Umordnen)
 - Mischung (von vielen auf 2 Spuren), Export
- eine einfache DAW (nur Aufnahme und Abspielen, live)
 http://essej.net/sooperlooper/
- Hörbeispiel (Video) von Konrad Küchenmeister (2007)
 Ü: Vergleiche GUI-Konzepte der gezeigten Soft- und
 - Hardware. eine typische Loop-Station: https:

//za.boss.info/support/by_product/rc-505/

Ardour http://ardour.org/

- Recording (beliebig viele Kanäle),
 - Editing (non-destructive, non-linear editing with unlimited undo/redo, even across editing sessions)
 - Mixing (Routing, Monitoring), Plugins (LV2), Exporting
- Autoren: Paul Davis (Interview:

```
https://www.admiralbumblebee.com/music/2018/02/20/
Interview-with-Paul-Davis-of-Ardour-about-Ardour-6-
html ), Robin Gareus (https://gareus.org/), et al.
```

• Lehrmaterialien von Paul Davis 2008 (Folie daw9, S. 14ff)
http://tu.linuxaudiosystems.com/dawd
https://www.ak.tu-berlin.de/menue/edgard_
varese_guest_professorship/

Magnetband-Musik

- vor dem Zeitalter der DAW: Magnettonbänder zerschneiden, verkleben, umkopieren!
- Karlheinz Stockhausen: Hymnen 1966 https: //web.archive.org/web/20080516211332/http: //www.stockhausen.org/hymnen_intro.html
- Holger Czukay (1938–2017) studierte bei Stockhausen, dann Bassist bei Can (1968–1979), dann Solo-Werke, u.a. Der Osten ist rot 1984.
- Beatles: I am the Walrus (1967) (enthält Audio-Zitate einer Rundfunksendung) (Ü: Akkordfolge? mit Chordino analysieren)

Revolution #9 (1968), White Album, Tonbandcollage

Übungen

- Bedienung (GUI-Design) von Loop-Stations (vgl. SooperLooper, Boss RC 505, Boss RC 300)
- jack-example-client: implementiere Echo, Hall, Phaser, Kompressor, . . .

Algorithmische Mechanik

Quellen, Verweise

- Gastvortrag Olli Holland https://l-l-l-l.com/ physisch-digitale Rückkopplung:
 - eine Spur des Sequencers steuert einen mechanischen Aktor (Trommelstock)
 - von Mikrofon aufgenommene Signale steuern den Sequencer
- Moritz Simon Geist: die mechanische TR-808

```
http://sonicrobots.com/Project/mr-808-interactive/
```

• Festival of Algorithmic and Mechanic Movement (Sheffield) http://algomech.com/2019/

Notensatz

Übersicht

- schriftliche Fixierung von Musik zum Zweck der Archivierung und späteren Aufführung
- zweidimensionale Notation:
 - für jede einzelne Stimme (Notensystem)
 - Ordinate (nach oben) (Notenlinie): Tonhöhe
 - Abszisse (nach rechts): Zeit
 Zeit auch durch Form der Noten (Köpfe, Hälse)
 - für mehrere Stimmen:
 - Notensysteme übereinander bedeutet Gleichzeitigkeit
- Notensatz mit Computer: grafisch (WYSIWIG) oder programmatisch (algebraisch)

Notensatz mit Lilypond

- kompiliert algebraische Musik-Beschreibung (Programmtext) zu grafischer Darstellung (PDF) sowie zu MIDI-Datenstrom
- Warum? http://lilypond.org/essay.html
- Wie? http://lilypond.org/doc/v2.19/ Documentation/contributor-big-page.html# overview-of-lilypond-architecture
 - Implementierung in C++
 - Anwender-definierte Erweiterungen in LISP (Scheme)
 - Backend benutzt Metafont https://web.archive. org/web/20110927042453/http://www.tex.ac. uk/ctan/systems/knuth/dist/mf/mf.web

Sematik von Lilypond (lokal)

```
• \version "2.18.2" \header { } \score {
    \relative c' { c4 d e f | g a b c }
    \layout { } \midi { }
}
```

- lokale Struktur (Folge von Noten einer Stimme)
 - Einzelnote (Bsp: c' '4): Name, Oktave, Zeit
 - fall Zeit nicht angegeben, dann vorigen Wert benutzen bei Taktstrich: Zeit muß Vielfaches des Taktes sein
 - relative Notation: immer die nächstliegende Oktave damit muß man für Melodien wesentlich weniger schreiben als bei Haskore (u.ä.)
- globale Struktur ... nächste Folie

Semantik von Lilypond (global)

- Zusammensetzung von Teil-Partituren:
 - sequentiell: hintereinander
 - parallel: Operator << ... >>
 \relative c' {c4 d e <<f a c>> | <<g b d>> a b c}
- Notensysteme (für mehrstimmigen Satz)

```
<< \new Staff{\relative c' { c4 d e f | g a b c }}
  \new Staff {\relative c'' { g a g f | e d d c }}
>>
```

- Wiederholungen:
 - notiert (Wiederholungszeichen in Partitur):

```
repeat volta 2 {c1}
```

- expandiert: repeat unfold 2 {c1}

Semantik von Lilypond: Unterprogramme

Namen zur Bezeichnung von Teilpartituren

- vergleichbar zu Unterprogrammen, aber
 - Unterprogramme haben keine Argumente
 - Unterprogramme sind global (außerhalb \score{..})
 - es gibt keine Bedingungen und Verzweigungen

Das ist ein riesengroßer Rückschritt im Vergleich zu Haskore u.ä.

Work-around: man kann LISP-Code schreiben

Semantik von Lilypond (Kontexte)

- \new Staff, \new Voice, ... legt Kontexte an,
- zu jedem Kontext gehören mehrere *engraver*,

 diese verarbeiten *musical expression* zu grafischen

 Elementen: Clef_engraver, Key_engraver,

 Note_heads_engraver,...
- benannter Kontext kann "von außen" benutzt werden

```
<< \new Staff { \new Voice = "foo" {} }
  \new Staff { \new Voice \relative c' {c4 d e f}
  \context Voice = "foo" \relative c' { g a b c }
>>
```

Anwendung: Text (Silben) unter Melodie (Noten)

Anwendung von Kontexten

Text (Silben) unter Melodie (Noten)

```
• << \new Staff { \new Voice = "foo" {} }
  \new Lyrics = "here"
  \context Voice = "foo"
    \relative c' { g a b c }
  \context Lyrics = "here" {
    \lyricsto "foo" { fas- ci- na- ting }
  } >>
```

- spezifiziert wird:
 - wo der Text erscheint: \new Lyrics
 - nach welcher Stimme er ausgerichtet wird: \lyricsto

Übung

1. Lilypond-Beispiele

```
https://gitlab.imn.htwk-leipzig.de/waldmann/cm-ws18/tree/master/lilypond
```

2. einfache Beispiele ausprobieren

```
lilypond basic.ly
evince basic.pdf
timidity basic.midi
```

- 3. Chase the Devil analysieren, modifizieren, ergänzen,
- 4. Schlagzeug hinzufügen

```
\new DrumStaff { \drummode { bd4 bd } }
```

Sprachsynthese, Vocoder, etc.

Formant-Synthese

- Klang der menschlichen Stimme bestimmt durch
 - Klangerzeugung (Stimmbänder) (Quelle)
 - Klangbeeinflussung (Mundraum) (Filter)
- Sprach-Kompression durch subtraktive Synthese: nur Filterinformation (Formanten) übertragen, dann Filter auf Rausch-Quelle anwenden
- oder auf andere Quellen, Bsp: Vokalfilter

```
d1 $ s "jvbass" |+| vowel "a [e i] o u"
```

Vocoder

- Eingänge: Modulation f (Sprache), Träger t (Instrument)
- f und t durch Bandpässe verschiedener Frequenzen aufspalten in Signale f_1, f_2, \ldots bzw. t_1, t_2, \ldots
- Ausgang = $\sum_i |f_i| \cdot t_i$
- der akustische Vocoder: die talk box
 Trägersignal durch Schlauch in den Mund, Mikrofon davor
- Hörbeispiele: Daft Punk: Prime Time Of Your Life (2005),
 E.L.O.: Sweet Talking Woman (1978), Peter Frampton:
 Show Me the Way (1975), Kraftwerk: Autobahn (1974),

Pete Drake: Satisfied Mind, Invitation to the Blues (1962)