Fortgeschrittene Programmierung Vorlesung WS 09,10; SS 12–14, 16–19, 21

Johannes Waldmann, HTWK Leipzig

9. Juli 2021

Einleitung

Programmierung im Studium bisher

- 1. Sem: Modellierung (formale Spezifikationen (von konkreten und abstrakten Datentypen))
- 1./2. Sem Grundlagen der (AO) Programmierung
 - imperatives Progr. (Programm ist Folge von Anweisungen, bewirkt Zustandsänderung)
 - strukturiertes P. (genau ein Eingang/Ausgang je Teilp.)
 - objektorientiertes P. (Interface = abstrakter Datentyp, Klasse = konkreter Datentyp)
- 2. Sem: Algorithmen und Datenstrukturen (Spezifikation, Implementierung, Korrektheit, Komplexität)
- 3. Sem: Softwaretechnik (industrielle Softwareproduktion)

Worin besteht jetzt der Fortschritt?

- deklarative Programmierung
 (Programm ist ausführbare Spezifikation)
- insbesondere: funktionale Programmierung

Def: Programm berechnet *Funktion*

 $f: \mathsf{Eingabe} \mapsto \mathsf{Ausgabe},$

(kein Zustand, keine Zustandsänderungen)

- - Daten (erster Ordnung) sind Bäume
 - Programm ist Gleichungssystem
 - Programme sind auch Daten (höherer Ordnung)
- ausdrucksstark, sicher, effizient, parallelisierbar

Formen der deklarativen Programmierung

• funktionale Programmierung: foldr (+) 0 [1,2,3]
foldr f z l = case l of
 [] -> z ; (x:xs) -> f x (foldr f z xs)

• logische Programmierung: append (A, B, [1, 2, 3]).

```
append([],YS,YS).
append([X|XS],YS,[X|ZS]):-append(XS,YS,ZS).
```

Constraint-Programmierung

```
(set-logic QF_LIA) (set-option :produce-models true
(declare-fun a () Int) (declare-fun b () Int)
(assert (and (>= a 5) (<= b 30) (= (+ a b) 20)))
(check-sat) (get-value (a b))</pre>
```

Definition: Funktionale Programmierung

- Rechnen = Auswerten von Ausdrücken (Termbäumen)
- Dabei wird ein Wert bestimmt und es gibt keine (versteckte) Wirkung.
 (engl.: side effect, dt.: Nebenwirkung)
- Werte können sein:
 - "klassische" Daten (Zahlen, Listen, Bäume...)

```
True :: Bool, [3.5, 4.5] :: [Double]
```

- Funktionen (Sinus, ...)

```
[sin, cos] :: [Double -> Double]
```

Aktionen (Datei lesen, schreiben, ...)

```
readFile "foo.text" :: IO String
```

Softwaretechnische Vorteile

- ...der funktionalen Programmierung
- Beweisbarkeit: Rechnen mit Programmen wie in der Mathematik mit Termen
- Sicherheit: es gibt keine Nebenwirkungen und Wirkungen sieht man bereits am Typ
- Aussdrucksstärke, Wiederverwendbarkeit: durch Funktionen höherer Ordnung (sog. Entwurfsmuster)
- Effizienz: durch Programmtransformationen im Compiler,
- Parallelität: keine Nebenwirkungen ⇒ keine data races,
 fktl. Programme sind automatisch parallelisierbar

Beispiel Spezifikation/Test

import Test.LeanCheck

```
append :: forall t . [t] -> [t] -> [t]
append [] y = y
append (h : t) y = h : (append t y)
associative f =
  commutative f = \langle x y - \rangle...
test = check
```

(associative (append::[Bool]->[Bool]->[Boo

Übung: Kommutativität (formulieren und testen)

Beispiel Verifikation

```
app :: forall t . [t] -> [t] -> [t]
app [] y = y
app (h : t) y = h : (app t y)
Lemma: app x (app y z) .=. app (app x y) z
Proof by induction on List x
  Case []
    To show: app [] (app y z) .= app (app [] y) z
  Case h:t
    To show: app (h:t) (app y z) .= . app (app (h:t) y
    IH: app t (app y z) .= app (app t y) z
CYP https://github.com/noschinl/cyp,
ist vereinfachte Version
von Isabelle https://isabelle.in.tum.de/
```

Beispiel Parallelisierung (Haskell)

Klassische Implementierung von Mergesort

wird parallelisiert durch Annotationen:

Beispiel Parallelisierung (C#, PLINQ)

Die Anzahl der 1-Bits einer nichtnegativen Zahl:

automatische parallele Auswertung, Laufzeitvergleich:

vgl. Introduction to PLINQ https://msdn.microsoft.com/en-us/library/dd997425(v=vs.110).aspx

Softwaretechnische Vorteile

...der statischen Typisierung

The language in which you write profoundly affects the design of programs written in that language.

For example, in the OO world, many people use UML to sketch a design. In Haskell or ML, one writes type signatures instead. Much of the initial design phase of a functional program consists of writing type definitions.

Unlike UML, though, all this design is incorporated in the final product, and is machine-checked throughout.

Simon Peyton Jones, in: Masterminds of Programing, 2009;

http://shop.oreilly.com/product/9780596515171.do

Deklarative Programmierung in der Lehre

- funktionale Programmierung: diese Vorlesung
- logische Programmierung: in Angew. Künstl. Intell.
- Constraint-Programmierung: als Master-Wahlfach

Beziehungen zu weiteren LV: Voraussetzungen

- Bäume, Terme (Alg.+DS, Grundlagen Theor. Inf.)
- Logik (Grundlagen TI, Softwaretechnik)

Anwendungen:

- Softwarepraktikum
- weitere Sprachkonzepte in *Prinzipien v. Programmiersprachen*
- Programmverifikation (vorw. f. imperative Programme)

Konzepte und Sprachen

Funktionale Programmierung ist ein *Konzept*. Realisierungen:

- in prozeduralen Sprachen:
 - Unterprogramme als Argumente (in Pascal)
 - Funktionszeiger (in C)
- in OO-Sprachen: Befehlsobjekte
- Multi-Paradigmen-Sprachen:
 - Lambda-Ausdrücke in C#, Scala, Clojure
- funktionale Programmiersprachen (LISP, ML, Haskell)
- Die Erkenntnisse sind sprachunabhängig.
- A good programmer can write LISP in any language.
- Learn Haskell and become a better Java programmer.

– Typeset by Foil T_EX –

Gliederung der Vorlesung

- Terme, Termersetzungssysteme algebraische Datentypen, Pattern Matching, Persistenz
- Funktionen (polymorph, höherer Ordnung),
 Lambda-Kalkül, Rekursionsmuster
- Typklassen zur Steuerung der Polymorphie
- Bedarfsauswertung, unendl. Datenstrukturen (Iterator-Muster)
- funktional-reaktive Programmierung (deklarative interaktive Programme)
- weitere Entwurfsmuster
- Code-Qualität, Code-Smells, Refactoring

Typeset by FoilT_EX −

13

Softwaretechnische Aspekte

- algebraische Datentypen, Pattern Matching, Termersetzungssysteme Scale: case class, Java: Entwurfsmuster Kompositum, immutable objects, das Datenmodell von Git
- Funktionen (höherer Ordnung), Lambda-Kalkül, Rekursionsmuster
 Lambda-Ausdrücke in C#, Entwurfsmuster Besucher
 Codequalität, code smells, Refaktorisierung
- Typklassen zur Steuerung der Polymorphie
 Interfaces in Java/C#, automatische Testfallgenerierung
- Bedarfsauswertung, unendl. Datenstrukturen
 Iteratoren, Ströme, LINQ

Literatur (allgemein)

- wissenschaftliche Quellen zur aktuellen Forschung und Anwendung der funktionalen Programmierung
 - Journal of Functional Programming (CUP) https://www.cambridge.org/core/journals/ journal-of-functional-programming
 - Intl. Conference Functional Programming (ACM SIGPLAN) https://www.icfpconference.org/
 - Intl. Workshop Trends in Functional Programming in Education https://wiki.tfpie.science.ru.nl/
- http://haskell.org/ (Sprachstandard, Werkzeuge, Bibliotheken, Tutorials),

Literatur (speziell diese VL)

- Skript aktuelles Semester http://www.imn. htwk-leipzig.de/~waldmann/lehre.html
- How I Teach Functional Programming

```
https://imweb.imn.htwk-leipzig.de/~waldmann/talk/17/wflp/
```

- Kriterium für Haskell-Tutorials und -Lehrbücher:
 - wo werden data (benutzerdefinerte algebraische Datentypen) und case (pattern matching) erklärt? Je später, desto schlechter!

Alternative Quellen

- Q: Aber in Wikipedia/Stackoverflow steht, daß . . .
 - A: Na und.
- Es mag eine in Einzelfällen nützliche Übung sein, sich mit dem Halbwissen von Nichtfachleuten auseinanderzusetzen. (Aber https://xkcd.com/386/)
- In VL und Ubung verwenden und diskutieren wir die durch Dozenten/Skript/Modulbeschreibung vorgegebenen Quellen (Lehrbücher, referierte Original-Artikel, Standards zu Sprachen und Bibliotheken)
- ...gilt entsprechend für Ihre Bachelor- und Master-Arbeit.
- Wikipedia: benutzen—ja (um Primärquellen zu finden), zitieren—nein (ist keine wissenschaftliche Quelle).

Organisation der LV

- jede Woche eine Vorlesung, eine Übung
- Hausaufgaben
 - gruppenweise: schriftliche Aufgaben: anmelden (Wiki), diskutieren (Issue-Tracker), vorrechnen (in der jeweils nächsten Übung)
 - individuell (jeweils 2 Wochen Bearbeitungszeit)
 https://autotool.imn.htwk-leipzig.de/new/
- Prüfungszulassung: regelmäßiges und erfolgreiches Bearbeiten der Übungsaufgaben.
 - Vorrechnen: 3 mal,
 - Autotool: 50 Prozent der Pflicht-Aufgaben,
- Prüfung: digitale Hausarbeit (autotool)

Hinweise zu Fernlehre

- allgemeines: https://imweb.imn.htwk-leipzig.de/ ~waldmann/etc/fernlehre/
- Software (Compiler) im Pool (Z423) installiert, von außen erreichbar (ssh, tmux); private Installation empfohlen (Details in Gitlab-Projekt), aber nicht notwendig
- Schrift in Präsent.: groß (Ctrl-Plus), Schwarz auf Weiß.
- Datenschutz:
 - vor Screen-Sharing: nachdenken und aufräumen
 - vor Benutzung von: Browser, Suchmaschine, sogenannten sozialen Netzwerken: nachdenken!!

```
vgl. https://imweb.imn.htwk-leipzig.de/~waldmann/
edu/ws20/inf/folien/#(11)
```

Übungen

- Benutztung Rechnerpool (ssh, tmux, ghci)
- Auf wieviele Nullen endet die Fakultät von 100?
 - Benutze foldr zum Berechnen der Fakultät.
 - Beachte polymorphe numerische Literale.
 (Auflösung der Polymorphie durch Typ-Annotation.)
 Warum ist 100 Fakultät als Int gleich 0?
 - Welches ist der Typ der Funktion takeWhile? Beispiel:

```
odd 3 ==> True ; odd 4 ==> False
takeWhile odd [3,1,4,1,5,9] ==> [3,1]
```

 ersetze in der Lösung takeWhile durch andere Funktionen des gleichen Typs (suche diese mit Hoogle), erkläre Semantik

- typische Eigenschaften dieses Beispiels (nachmachen!) statische Typisierung, Schachtelung von Funktionsaufrufen, Funktion höherer Ordnung, Benutzung von Funktionen aus Standardbibliothek (anstatt selbstgeschriebener).
- schlechte Eigenschaften (vermeiden!)
 Benutzung von Zahlen und Listen (anstatt anwendungsspezifischer Datentypen) vgl.

```
http://www.imn.htwk-leipzig.de/~waldmann/
etc/untutorial/list-or-not-list/
```

- Haskell-Entwicklungswerkzeuge
 - Compiler, REPL: ghci (Fehlermeldungen, Holes)
 - API-Suchmaschine http://www.haskell.org/hoogle/

- Editor: Emacs http://xkcd.org/378/,
 IDE? gibt es, brauchen wir (in dieser VL) nicht
 https://hackage.haskell.org/package/
 haskell-language-server
- Softwaretechnik im autotool: http://www.imn. htwk-leipzig.de/~waldmann/etc/untutorial/se/

Aufgaben

(im SS21: Aufgaben 2, 3 bis KW 15)

- zu: E. W. Dijkstra: Answers to Questions from Students of Software Engineering (Austin, 2000) (EWD 1035)
 - "putting the cart before the horse"
 - übersetzen Sie wörtlich ins Deutsche,
 - geben Sie eine entsprechende idiomatische Redewendung in Ihrer Muttersprache an,
 - wofür stehen cart und horse hier konkret?
- 2. sind die empfohlenen exakten Techniken der Programmierung für große Systeme anwendbar?

Erklären Sie "lengths of ... grow not much more than linear with the lengths of ...".

Welche Längen werden hier verglichen?

Modellieren Sie das System als Graph, die Knoten sind die Komponenten, die Kanten sind deren Beziehungen (direkte Abhängigkeiten).

- Welches asymptotische Wachstum ist bei undisziplinierter Entwicklung des Systems zu befürchten?
- Welche Graph-Eigenschaft impliziert den linearen Zusammenhang?
- Wie gestaltet man den System-Entwurf, so daß diese Eigenschaft tatsächlich gilt? Welchen Nutzen hat das für Entwicklung und Wartung?

3. Über ein Monoid $(M, \circ, 1)$ mit Elementen $a, b \in M$ (sowie

eventuell weiteren) ist bekannt: $a^2 = b^2 = (ab)^2 = 1$.

Dabei ist ab eine Abkürzung für $a \circ b$ und a^2 für aa, usw.

- Geben Sie ein Modell mit $1 \neq a \neq b \neq 1$ an.
- Überprüfen Sie ab = ba in Ihrem Modell.
- Leiten Sie ab = ba aus den Monoid-Axiomen und gegebenen Gleichungen ab.

Das ist eine Übung zur Wiederholung der Konzepte abstrakter und konkreter Datentyp sowie Spezifikation.

- 4. im Rechnerpool live vorführen:
 - ein Terminal öffnen
 - ghci starten (in der aktuellen Version), Fakultät von 100 ausrechnen

Datei F.hs mit Texteditor anlegen und öffnen, Quelltext
 f = ... (Ausdruck mit Wert 100!) schreiben, diese
 Datei in ghci laden, f auswerten

Dabei wg. Projektion an die Wand:

Schrift 1. groß genug und 2. schwarz auf weiß.

Vorher Bildschirm(hintergrund) aufräumen, so daß bei Projektion keine personenbezogenen Daten sichtbar werden. Beispiel: export PS1="\$ " ändert den Shell-Prompt (versteckt den Benutzernamen).

Wer (unsinnigerweise) eigenen Rechner im Pool benutzt:

- Aufgaben wie oben und
- ssh-Login auf einen Rechner des Pools
 (damit wird die Ausrede GHC (usw.) geht auf meinem

Rechner nicht hinfällig)

 ssh-Login oder remote-Desktop-Zugriff von einem Rechner des Pools auf Ihren Rechner (damit das projiziert werden kann, ohne den Beamer umzustöpseln)

(falls das alles zu umständlich ist, dann eben doch einen Pool-Rechner benutzen)

- 5. welcher Typ ist zu erwarten für die Funktion,
 - (wurde bereits in der Übung behandlelt) die das Spiegelbild einer Zeichenkette berechnet?
 - die die Liste aller (durch Leerzeichen getrennten)
 Wörter einer Zeichenkette berechnet?

```
f "foo bar" = [ "foo", "bar" ]
```

Suchen Sie nach Funktionen dieses Typs mit https://www.haskell.org/hoogle/, erklären Sie einige der Resultate, welches davon ist das passende, rufen Sie diese Funktion auf (in ghci).

Daten

Wiederholung: Terme

- (Prädikatenlogik) Signatur Σ ist Menge von Funktionssymbolen mit Stelligkeiten ein Term t in Signatur Σ ist
 - Funktionssymbol $f \in \Sigma$ der Stelligkeit k mit Argumenten (t_1, \ldots, t_k) , die selbst Terme sind. $\operatorname{Term}(\Sigma) = \operatorname{Menge} \operatorname{der} \operatorname{Terme} \operatorname{"uber"} \operatorname{Signatur"} \Sigma$
- (Graphentheorie) ein Term ist ein gerichteter, geordneter, markierter Baum
- (Datenstrukturen)
 - Funktionssymbol = Konstruktor, Term = Baum

Beispiele: Signatur, Terme

- Signatur: $\Sigma_1 = \{Z/0, S/1, f/2\}$
- Elemente von $\mathrm{Term}(\Sigma_1)$:

- Signatur: $\Sigma_2 = \{E/0, A/1, B/1\}$
- Elemente von $\operatorname{Term}(\Sigma_2)$: . . .

Algebraische Datentypen

```
data Foo = Foo { bar :: Int, baz :: String }
  deriving Show
```

Bezeichnungen (benannte Notation)

- data Foo ist Typname
- Foo { .. } ist Konstruktor
- bar, baz sind Komponenten

```
x :: Foo
x = Foo { bar = 3, baz = "hal" }
```

Bezeichnungen (positionelle Notation)

```
data Foo = Foo Int String
y = Foo 3 "bar"
```

Datentyp mit mehreren Konstruktoren

Beispiel (selbst definiert)

Bespiele (in Prelude vordefiniert)

```
data Bool = False | True
data Ordering = LT | EQ | GT
```

Mehrsortige Signaturen

- (bisher) einsortige Signatur
 Abbildung von Funktionssymbol nach Stelligkeit
- (neu) mehrsortige Signatur
 - Menge von Sortensymbolen $S = \{S_1, \ldots\}$
 - Abb. von F.-Symbol nach Typ
 - *Typ* ist Element aus $S^* \times S$ Folge der Argument-Sorten, Resultat-Sorte

$$\begin{array}{l} \mathsf{Bsp.:}\ S = \{Z,B\}, \Sigma = \{0 \mapsto ([],Z), p \mapsto ([Z,Z],Z), \\ e \mapsto ([Z,Z],B), a \mapsto ([B,B],B)\}. \end{array}$$

• $Term(\Sigma)$: konkrete Beispiele, allgemeine Definition?

Rekursive Datentypen

Ubung: Objekte dieses Typs erzeugen (benannte und positionelle Notation der Konstruktoren)

Daten mit Baum-Struktur

- mathematisches Modell: Term über Signatur
- programmiersprachliche Bezeichnung: algebraischer Datentyp (die Konstruktoren bilden eine Algebra)
- praktische Anwendungen:
 - Formel-Bäume (in Aussagen- und Prädikatenlogik)
 - Suchbäume (in VL Algorithmen und Datenstrukturen, in java.util.TreeSet<E>)
 - DOM (Document Object Model)
 https://www.w3.org/DOM/DOMTR
 - JSON (Javascript Object Notation) z.B. für AJAX http://www.ecma-international.org/publications/standards/Ecma-404.htm

Übung Terme

- Geben Sie die Signatur des Terms $\sqrt{a \cdot a + b \cdot b}$ an.
- Geben Sie ein Element $t \in \text{Term}(\{f/1, g/3, c/0\})$ an mit |t| = 5 und $\text{depth}(t) \le 2$.

mit ghci:

• data $T = F T \mid G T T T \mid C deriving Show$ erzeugen Sie o.g. Term t (durch Konstruktoraufrufe)

Die *Größe* eines Terms t ist definiert durch

$$|f(t_0,\ldots,t_{k-1})| = 1 + \sum_{i=0}^{k-1} |t_i|$$

• Bestimmen Sie $|\sqrt{a \cdot a + b \cdot b}|$.

Hausaufgaben

SS21: für KW15: Aufgaben 2 und 3

autotool-Aufgabe Data-1

Allgemeine Hinweise zur Bearbeitung von Haskell-Lückentext-Aufgaben:

- Schreiben Sie den angezeigten Quelltext (vollständig! ohne zusätzliche Leerzeichen am Zeilenanfang!) in eine Datei mit Endung .hs, starten Sie ghci mit diesem Dateinamen als Argument
- ändern Sie den Quelltext: ersetzen Sie undefined durch einen geeigneten Ausdruck, hier z.B.

```
solution = S.fromList [ False, G ]
im Editor speichern, in ghci neu laden (:r)
```

- reparieren Sie Typfehler, werten Sie geeignete Terme aus, hier z.B. S.size solution
- werten Sie test aus, wenn test den Wert True ergibt, dann tragen Sie die Lösung in autotool ein.

2. Geben Sie einen Typ (eine data-Deklaration) mit genau 100 Elementen an. Sie können andere Data-Deklarationen benutzen (wie in autotool-Aufgabe). Minimieren Sie die Gesamtzahl aller deklarierten Konstruktoren.

3. Vervollständigen Sie die Definition der *Tiefe* von Termen:

$$depth(f()) = 0$$

$$k > 0 \Rightarrow depth(f(t_0, \dots, t_{k-1})) = \dots$$

- Bestimmen Sie depth $(\sqrt{a \cdot a + b \cdot b})$
- Beweisen Sie $\forall \Sigma : \forall t \in \text{Term}(\Sigma) : \text{depth}(t) \leq |t| 1$.
- Für welche Terme gilt hier die Gleichheit?

– Typeset by FoilT_EX −

Programme

Plan

- wir haben: für Baum-artige Daten:
 - mathematisches Modell: Terme über einer Signatur
 - Realisierung als: algebraischer Datentyp (data)
- wir wollen: für Programme, die diese Daten verarbeiten:

40

- mathematisches Modell: Termersetzung
- Realisierung als: Pattern matching (case)

− Typeset by FoilT_EX –

Bezeichnungen für Teilterme

- *Position*: Folge von natürlichen Zahlen (bezeichnet einen Pfad von der Wurzel zu einem Knoten) Beispiel: für t = S(f(S(Z(1)), Z(1))) ist [0,1] eine Position in t.
- $\operatorname{Pos}(t) = \operatorname{die} \operatorname{Menge} \operatorname{der} \operatorname{Positionen} \operatorname{eines} \operatorname{Terms} t$ • Definition: wenn $t = f(t_0, \dots, t_{k-1})$, d.h., k Kinder • dann $\operatorname{Pos}(t) = \{[]\} \cup \{[i] + p \mid 0 \le i < k \land p \in \operatorname{Pos}(t_i)\}.$

dabei bezeichnen:

- [] die leere Folge,
- [i] die Folge der Länge 1 mit Element i,
- ++ den Verkettungsoperator f
 ür Folgen

- Typeset by FoilT_EX -

Operationen mit (Teil)Termen

• t[p] = der Teilterm von t an Position p

Beispiel: S(f(S(Z(1)), Z(1)))[0, 1] = ...

Definition (durch Induktion über die Länge von p): . . .

• t[p := s] : wie t, aber mit Term s an Position p

Beispiel: S(f(S(Z(1)), Z(1)))[[0, 1] := S(Z)] = ...

Definition (durch Induktion über die Länge von p): . . .

- Typeset by FoilT_EX -

Operationen mit Variablen in Termen

• $\operatorname{Term}(\Sigma,V)=$ Menge der Terme über Signatur Σ mit Variablen aus V

Beispiel:
$$\Sigma = \{Z/0, S/1, f/2\}, V = \{y\}, f(Z(), y) \in \text{Term}(\Sigma, V).$$

• Substitution σ : partielle Abbildung $V \to \operatorname{Term}(\Sigma)$

Beispiel: $\sigma_1 = \{(y, S(Z()))\}$

• eine Substitution auf einen Term anwenden: $t\sigma$:

Intuition: wie t, aber statt v immer $\sigma(v)$

Beispiel: $f(Z(),y)\sigma_1 = f(Z(),S(Z()))$

Definition durch Induktion über t

Termersetzungssysteme

- Daten = Terme (ohne Variablen)
- Programm R = Menge von Regeln

Bsp:
$$R = \{(f(Z(), y), y), (f(S(x), y), S(f(x, y)))\}$$

- Regel = Paar (l, r) von Termen mit Variablen
- Relation \rightarrow_R ist Menge aller Paare (t, t') mit
 - es existiert $(l,r) \in R$
 - es existiert Position p in t
 - es existiert Substitution $\sigma : (\operatorname{Var}(l) \cup \operatorname{Var}(r)) \to \operatorname{Term}(\Sigma)$
 - so daß $t[p] = l\sigma$ und $t' = t[p := r\sigma]$.

Termersetzungssysteme als Programme

- \rightarrow_R beschreibt *einen* Schritt der Rechnung von R,
- transitive und reflexive Hülle \rightarrow_R^* beschreibt *Folge* von Schritten.
- Resultat einer Rechnung ist Term in R-Normalform (:= ohne \rightarrow_R -Nachfolger)

dieses Berechnungsmodell ist im allgemeinen

- nichtdeterministisch $R_1 = \{C(x,y) \to x, C(x,y) \to y\}$ (ein Term kann mehrere \to_R -Nachfolger haben, ein Term kann mehrere Normalformen erreichen)
- nicht terminierend $R_2 = \{p(x,y) \rightarrow p(y,x)\}$ (es gibt eine unendliche Folge von \rightarrow_R -Schritten, es kann Terme ohne Normalform geben)

- Typeset by FoilT_EX -

Konstruktor-Systeme

Für TRS R über Signatur Σ : Symbol $s \in \Sigma$ heißt

- definiert, wenn $\exists (l,r) \in R : l[] = s(...)$ (das Symbol in der Wurzel ist s)
- sonst Konstruktor.

Das TRS R heißt Konstruktor-TRS, falls:

definierte Symbole kommen links nur in den Wurzeln vor

Übung: diese Eigenschaft formal spezifizieren

Beispiele: $R_1 = \{a(b(x)) \to b(a(x))\}$ über $\Sigma_1 = \{a/1, b/1\}$,

$$R_2 = \{ f(f(x,y),z) \to f(x,f(y,z)) \text{ "uber } \Sigma_2 = \{f/2\}$$
:

definierte Symbole? Konstruktoren? Konstruktor-System?

Funktionale Programme sind ähnlich zu Konstruktor-TRS.

Funktionale Programme (Bsp. und Vergleich)

- Termersetzungssystem:
 - Signatur: $\{(S,1), (Z,0), (f,2)\}$, Variablenmenge $\{x',y\}$
 - Ersetzungssystem

```
\{f(Z,y) \to y, f(S(x'),y) \to S(f(x',y))\}.
```

- ist Konstruktor-System, definierte Symbole: $\{f\}$, Konstruktoren: $\{S, Z\}$,
- Startterm f(S(S(Z)), S(Z)).
- funktionales Programm:

```
data N = Z \mid S \mid N -- Signatur für Daten f: N -> N -- Signatur für Funktion f Z y = y; f (S x') y = S (f x' y) -- Gleichungen f (S (S Z)) (S Z) -- Benutzung der definierten Fkt.
```

Alternative Notation f. Gleichungssystem

für die Definition einer Funktion f mit diesem Typ

```
data N = Z \mid S \mid N ; f :: N \rightarrow N \rightarrow N
```

• (eben gesehen) mehrere Gleichungen

```
f Z y = y

f (S x') y = S (f x' y)
```

 äquivalente Notation: eine Gleichung, in der rechten Seite: Verzweigung (erkennbar an case) mit zwei Zweigen (erkennbar an ->)

```
f x y = case x of { Z -> y ; S x' -> S (f x' y) }
```

Pattern Matching

```
data N = Z | S N; data Bool = False | True
positive :: N -> Bool
positive x = case x of { Z -> False; S x' -> True }

• Syntax: case <Diskriminante> of
{ <Muster> -> <Ausdruck>; ... }
```

- <Muster> enthält Konstruktoren und Variablen,
 entspricht linker Seite einer Term-Ersetzungs-Regel,
 <Ausdruck> entspricht rechter Seite
- statische Semantik:
 - jedes <Muster> hat gleichen Typ wie <Diskrim.>,
 - alle <Ausdruck> haben übereinstimmenden Typ.
- dynamische Semantik:
 - Def.: t paßt zum Muster l: es existiert σ mit $l\sigma = t$
 - für das erste passende Muster wird $r\sigma$ ausgewertet

Eigenschaften von Case-Ausdrücken

ein case-Ausdruck heißt

- disjunkt, wenn die Muster nicht überlappen
 (es gibt keinen Term, der zu mehr als 1 Muster paßt)
- vollständig, wenn die Muster den gesamten Datentyp abdecken

(es gibt keinen Term, der zu keinem Muster paßt)

```
Bespiele (für data T = A \mid B T \mid F T T)

-- nicht disjunkt:

case t of { F (B x) y \rightarrow ...; F x (B y) \rightarrow ...

-- nicht vollständig:

case t of { F x y \rightarrow ...; A \rightarrow ... }
```

data und case

typisches Vorgehen beim Verarbeiten algebraischer Daten vom Typ T:

Für jeden Konstruktor des Datentyps

```
data T = C1 \dots
```

schreibe einen Zweig in der Fallunterscheidung

```
f x = case x of
{ C1 ... -> ...
; C2 ... -> ... }
```

◆ Argumente der Konstruktoren sind Variablen ⇒
 Case-Ausdruck ist disjunkt und vollständig.

Pattern Matching in versch. Sprachen

• Scala: case classes http://docs.scala-lang.org/tutorials/tour/case-classes.html

• C#:

```
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-8.0/patterns.md
```

Javascript?

Nicht verwechseln mit *regular expression matching* zur String-Verarbeitung. Es geht um algebraische (d.h. baum-artige) Daten!

Rechnen mit Wahrheitswerten

der Datentyp

```
import qualified Prelude
data Bool = False | True
  deriving Prelude.Show
```

die Negation

```
not :: Bool \rightarrow Bool
not x = case x of { False <math>\rightarrow _ ; True \rightarrow _
```

die Konjunktion (als Operator geschrieben)

```
(\&\&) :: Bool -> Bool -> Bool x && y = case x of { False -> _ ; True -> _
```

Syntax für Unterprogramm-Aufrufe

- die Syntax eines Namens bestimmt, ob er als Funktion oder Operator verwendet wird:
 - Name aus Buchstaben (Bsp.: not, plus)
 steht als Funktion vor den Argumenten
 - Name aus Sonderzeichen (Bsp.: & &)
 steht als Operator zw. erstem und zweitem Argument
- zwischen Funktion und Operator umschalten:
 - in runden Klammern: Operator als Funktion

```
(&&)::Bool->Bool->Bool, (&&) False True
```

in Backticks: Funktion als Operator

```
3 'plus' 4
```

Syntax für Fallunterscheidungen

• not $x = case x of { False <math>-> _{;} True -> _{;} }$

Alternative Notation (links), Übersetzung (rechts)

- Abseitsregel (offside rule): wenn das n\u00e4chste (nicht leere) Zeichen nach of kein { ist, werden eingef\u00fcgt:
 - { nach of
 - ; nach Zeilenschaltung bei gleicher Einrückung
 -) nach Zeilenschaltung bei höherer Einrückung

Übung Term-Ersetzung

Für die Signatur $\Sigma = \{f/1, g/3, c/0\}$:

- geben Sie ein $t \in \text{Term}(\Sigma)$) an mit t[1] = c.
- Beweisen Sie $\forall \Sigma : \forall t \in \text{Term}(\Sigma) : |t| = |\text{Pos}(t)|$.
- Für die Signatur $\Sigma = \{Z/0, S/1, f/2\}$:
- für welche Substitution σ gilt $f(x,Z)\sigma = f(S(Z),Z)$?
- für dieses σ : bestimmen Sie $f(x, S(x))\sigma$.
- Notation für Termersetzungsregeln: anstatt (l, r) schreibe $l \rightarrow r$.
- Abkürzung für Anwendung von 0-stelligen Symbolen: anstatt Z() schreibe Z. (Vorsicht: dann kann man Variablen

nicht mehr von 0-stelligen Symbolen unterscheiden. Man muß dann immer die Signatur explizit angeben oder auf andere Weise vereinbaren, wie man Variablen erkennt, z.B. "Buchstaben am Ende das Alphabetes (..., x, y, ...) sind Variablen", das ist aber riskant)

- Für $R=\{f(S(x),y)\to f(x,S(y)), f(Z,y)\to y\}$ bestimme alle R-Normalformen von f(S(Z),S(Z)).
- für $R_d=R\cup\{d(x)\to f(x,x)\}$ bestimme alle R_d -Normalformen von d(d(S(Z))).
- Bestimme die Signatur Σ_d von R_d .

 Bestimme die Menge der Terme aus $\mathrm{Term}(\Sigma_d)$, die R_d -Normalformen sind.

Abkürzung für mehrfache Anwendung eines einstelligen Symbols: $A(A(A(A(x)))) = A^4(x)$

- für $\{A(B(x)) \rightarrow B(A(x))\}$ über Signatur $\{A/1, B/1, E/0\}$: bestimme Normalform von $A^k(B^k(E))$ für k=1,2,3, allgemein.
- für $\{A(B(x)) \rightarrow B(B(A(x)))\}$ über Signatur $\{A/1, B/1, E/0\}$: bestimme Normalform von $A^k(B(E))$ für k=1,2,3, allgemein.

Übung Pattern Matching, Programme

Für die Deklarationen

```
-- data Bool = False | True (aus Prelude)
data T = F T | G T T T | C
```

entscheide/bestimme für jeden der folgenden Ausdrücke:

- syntaktisch korrekt?
- statisch korrekt?
- Resultat (dynamische Semantik)
- disjunkt? vollständig?

```
1. case False of { True -> C }
2. case False of { C -> True }
```

```
    case False of { False -> F F }
    case G (F C) C (F C) of { G x y z -> F z }
    case F C of { F (F x) -> False }
    case F C of { F x -> False ; True -> Fal }
    case True of { False -> C ; True -> F C }
    case True of { False -> C ; False -> F C }
    case C of { G x y z -> False; F x -> Fal }
```

Listen von Wahrheitswerten:

```
data List = Nil | Cons Bool List deriving F
```

```
and :: List -> Bool and l = case l of ...
```

entsprechend or :: List -> Bool

- (Wdhlg.) welche Signatur beschreibt binäre Bäume (jeder Knoten hat 2 oder 0 Kinder, die Bäume sind; es gibt keine Schlüssel)
- geben Sie die dazu äquivalente data-Deklaration an: data T = ...
- implementieren Sie dafür die Funktionen

```
size :: T -> Prelude.Int
depth :: T -> Prelude.Int

benutze Prelude.+ (das ist Operator),
Prelude.min, Prelude.max
```

• für Peano-Zahlen data N = Z | S N implementieren Sie plus, mal, min, max

Hausaufgaben

im SS 21: Aufgaben 1 bis 4

- 1. für die Signatur $\{A/2, D/0\}$:
 - definiere Terme $t_0 = D, t_{i+1} = A(t_i, D)$. Zeichne t_3 . Bestimme $|t_i|, \operatorname{depth}(t_i)$.
 - für $S = \{A(A(D,x),y) \rightarrow A(x,A(x,y))\}$ bestimme S-Normalform(en), soweit existieren, der Terme t_0,t_1,\ldots,t_4 . Geben Sie für t_2 die ersten Ersetzungs-Schritte explizit an.
 - Normalform von t_i allgemein.
- 2. Für die Deklarationen

-- data Bool = False | True (aus Prelude)

```
data S = A Bool | B | C S S
```

entscheide/bestimme für jeden der folgenden Ausdrücke:

- syntaktisch korrekt?
- Resultat-Typ (statische Semantik)
- Resultat-Wert (dynamische Semantik)
- Menge der Muster ist: disjunkt? vollständig?

```
1. case False of { True -> B }
2. case False of { B -> True }
3. case C B B of { A x -> x }
4. case A True of { A x -> False }
5. case A True of { A x -> False ; True ->
```

6. case True of { False -> A ; True -> A Fa

- 7. case True of { False -> B ; False -> A F 8. case B of { C x y -> False; A x -> x; B
- weitere Beispiele selbst herstellen und dann in der Übung die anderen Teilnehmer fragen.
- 3. für selbst definierte Wahrheitswerte deklarieren, implementieren und testen Sie die einstellige Negation, die zweistellige Antivalenz.

```
import qualified Prelude
data Bool = False | True deriving Prelude.S
not :: ...
```

Definieren Sie

- not mit einer Gleichung (evtl. mit case)
- xor ohne case (evtl. mehrere Gleichungen)

4. für binäre Bäume ohne Schlüssel

```
data Tree = Leaf | Branch Tree Tree
```

deklarieren, implementieren und testen Sie ein einstelliges Prädikat über solchen Bäumen, das genau dann wahr ist, wenn das Argument eine gerade Anzahl von Blättern enthält.

Diese Anzahl *nicht* ausrechnen, sondern direkt den Wahrheitswert!

Bemerkung zur Bezeichnung: man könnte auch

data Node = Leaf | Branch Tree Tree

schreiben, aber bitte niemals:

data Tree = Leaf | Node Tree Tree

denn auch Blätter sind Knoten (nodes)! Ein Branch ist ein Verzweigungsknoten oder innerer Knoten, ein Blatt ist ein äußerer Knoten des Baumes.

Typeset by FoilT_EX –

Beweise

Motivation

- Programmierer (Software-Ingenieur) muß beweisen, daß Programm (Softwareprodukt) die Spezifikation erfüllt vgl. (Maschinen)Bau-Ingenieur: Brücke, Flugzeug
- vgl. Dijkstra (EWD 1305) zum Verhältnis von *Programmieren* (Wagen) und *Beweisen* (Pferd)
- für funktionale Programmierung: direkte Entsprechung zw. Konstruktion/Ausführung von Programm und Beweis:
 - Auswertungs-Schritte: Gleichungskette
 - Verzweigung (case): Fallunterscheidung
 - strukturelle Rekursion: vollständige Induktion

– Typeset by FoilT_EX – 6

Formale Beweise

- verschiedene Formen des Beweises:
 - Beweis durch hand waving, durch Autorität
 - formaler Beweis (handschriftlich, LATEX)
 - formaler Beweis mit maschineller Prüfung
- statische Programm-Eigenschaften:
 - als Typ-Aussagen formuliert (Bsp: f x :: Bool)
 - und durch Compiler bewiesen
- für Eigenschaften, die sich (in Haskell) nicht als Typ formulieren lassen (Bsp: f x == True),
 Benutzung anderer Notation und Werkzeuge.
 wir verwenden CYP (Noschinski et al.)
- ausdrucksstärkere Programmiersprachen ist z.B. Agda

- Typeset by Foil T_EX -

CYP: Gleichungsketten

• data Bool = False | True not :: Bool -> Bool not False = True not True = False Lemma nnf: not (not False) .=. False Proof by rewriting not (not False) (by def not) .=. not True (by def not) .=. False

vgl. Definition/Autotool-Aufgabe Term-Ersetzung

OED

CYP: Fallunterscheidung

```
• Lemma nnx: not (not x) .=. x
                Proof by case analysis on x :: Bool
                                            Case False
                                                                     Assume XF: x = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = ... = .
                                                                      Then Proof by rewriting not (not x)
                                                                                                    (by XF) .=. not (not False)
                                                                     QED
                  QED
```

- vollständige Menge der Muster in der Fallunterscheidung
- Notation . . . für Lücken auch in Autotool-Aufgaben

Peano-Zahlen

- Axiome von G. Peano: $0 \in \mathbb{N}, \forall x : x \in \mathbb{N} \Rightarrow (1+x) \in \mathbb{N}$
- realisiert als algebraischer Datentyp

Zahl $n \in \mathbb{N}$ dargestellt als $S^n(Z)$, Bsp: 2 = S(S(Z))

Ableitung der Implementierung der Addition

```
plus :: N \rightarrow N \rightarrow N
plus x y = case x of Z \rightarrow y; S x' \rightarrow ...
```

benutze Assoziatitität $x + y = (1 + x') + y = \dots$

Spezifikation und Test

Bsp: Addition von Peano-Zahlen

- Spezifikation:
 - **Typ:** plus :: N → N → N
 - Axiome (Bsp): plus ist kommutativ
- Test der Korrektheit durch
 - Aufzählen einzelner Testfälle

```
plus(S(SZ))(SZ) == plus(SZ)(S(SZ))
```

Notieren von Eigenschaften (properties)

```
plus_comm :: N -> N -> Bool
plus_comm x y = plus x y == plus y x
und automatische typgesteuerte Testdatenerzeugung
Test.LeanCheck.checkFor 10000 plus_comm
```

Spezifikation und Verifikation

Beweis für: Addition von Peano-Zahlen ist assoziativ

• zu zeigen ist

```
plus a (plus b c) == plus (plus a b) c
```

Beweismethode: Induktion (nach a)
 und Umformen mit Gleichungen (äquiv. zu Implement.)

```
plus Z y = y
plus (S x') y = S (plus x' y)
```

- Anfang: plus Z (plus b c) == ..
- Schritt: plus (S a') (plus b c) ==

== S (plus a' (plus b c)) == ..

Bezeichnungen in Beweisen durch Induktion

- Es ist $\forall t \in \mathrm{Term}(\Sigma) : P(t)$ zu zeigen P gilt für alle Terme der Signatur Σ .
- Beweis durch strukturelle Induktion
 - (IA) Induktions-Anfang: wir zeigen P(t) für alle Terme t=f(), d.h., Blätter
 - (IS) Induktions-Schritt wir zeigen P(t) für alle Terme $t=f(t_1,\ldots,t_n)$ mit $n\geq 1$, d.h., innere Knoten
 - * (IV) Induktions-Voraussetzung: $P(t_1) \wedge \cdots \wedge P(t_n)$, d.h., P gilt für alle Kinder von t
 - * (IB) Induktions-Behauptung: P(t) gezeigt wird die Implikation IV \Rightarrow IB.

Typeset by FoilT_EX –

CYP: Induktion

```
• Lemma plus_assoc :
   plus a (plus b c) .=. plus (plus a b) c
 Proof by induction on a :: N
 Case 7
   Show: plus Z (plus b c) .=. plus (plus Z b) c
   Proof ... QED
 Case S a'
   Fix a' :: N
   Assume IV:
     plus a' (plus b c).=. plus (plus a' b) c
   Then Show:
     plus(S a')(plus b c) .=. plus (plus (S a') b) c
   Proof ... QED
 QED
```

ausführliche Notation erforderlich — das ist Absicht

Beispiel Konstruktion/Induktion: even

```
even :: N -> Bool
even Z = True ; even (S x) = not (even x)
suchen f :: Bool -> Bool -> Bool, so daß
Lemma : even (plus a b) .=. f (even a) (even b)
```

• Vorgehensweise:

wir sehen beim Beweisen, welche Eigenschaften £ haben muß,

und definieren f dann genau so.

(Pferd — Wagen!)

- Typeset by FoilT_EX -

Beispiel Konstruktion/Induktion: even (IA)

```
● Lemma : even (plus a b) .=. f (even a) (even b)
 Proof by induction on a :: N
 Case 7
   Show: even (plus Z b) .=. f (even Z) (even b)
   Proof by rewriting even (plus Z b)
      (by def plus) .=. even b
      (by def f) .=. f True (even b)
     (by def even) .=. f (even Z) (even b)
   QED
 OED
```

• damit (by def f) stimmt, schreiben wir

```
f :: Bool -> Bool -> Bool f _ = _
```

Beispiel Konstruktion/Induktion: even (IS)

entscheidenden Stelle im Induktionsschritt ist

```
Proof by rewriting even (plus (S a') b)

(by def plus) .=. even (S (plus a' b))

(by def even) .=. not (even (plus a' b))

(by IH) .=. not (f (even a') (even b))

(by fnot) .=. f (not (even a')) (even b)

(by def even) .=. f (even (S a')) (even b)

QED
```

wir postulieren den Hilfssatz

```
Lemma fnot : not (f \times y) = f \pmod{x} y
Proof by case analysis on x :: Bool ... QED
```

Induktion über Bäume (IA)

• gegeben sind:

```
data Tree = Leaf | Branch Tree Tree
 leaves :: Tree -> N
 leaves Leaf = S Z
 leaves (Branch l r) = plus (leaves l) (leaves r)
• gesucht ist: g :: Tree -> Bool mit
 Lemma: even (leaves t) .=. q t
 Proof by induction on t :: Tree
 Case Leaf
   Show: even (leaves Leaf) .=. q Leaf
   Proof by rewriting ... QED
 OED
```

Induktion über Bäume (IS)

```
• Case Branch 1 r
   Fix 1 :: Tree, r :: Tree
   Assume
     IH1: g l .=. even (leaves l)
     IH2: g r .= . even (leaves r)
   Then Show:
     g (Branch l r) .=. even (leaves (Branch l r))
   Proof by rewriting
   QED
```

• zwei Teile der Induktionsvoraussetzung (IH1, IH2)

Multiplikation von Peano-Zahlen

• times :: N -> N -> N
times x y = case x of
Z -> _ ; S x' -> _

vervollständigen durch Umformen der Spezifikation,

Bsp.
$$(1 + x') \cdot y = y + x' \cdot y$$

- Eigenschaften formulieren, testen (leancheck),
 beweisen (auf Papier, mit CYP)
 - Multiplikation mit 0, mit 1,
 - Distributivität (mit Plus), Assoziativität, Kommutativität
- ähnliche für Potenzierung

Subtraktion

- minus :: N -> N -> N modifizierte Subtraktion, Bsp: $5\ominus 3=2, 3\ominus 5=0$
- Spezifikation: eigentlich $a \ominus b = \max(a-b,0)$, vollst. Spez. ohne Verwendung von Hilfsfunktionen:
 - $\forall a, b \in \mathbb{N} : (a+b) \ominus b = a$
 - $\forall a, b \in \mathbb{N} : a \ominus (a+b) = 0$
- Implementierung (Muster disjunkt? vollständig?)

```
minus Z b = _ ; minus a Z = _
minus (S a') (S b') = _
```

Hausaufgaben

im SS21: Aufgaben 2 bis 5

1. (autotool) Für die Funktion

```
f:: N \to N
f Z = Z; f (S \times) = S (S (f \times))
```

beweisen Sie (erst auf Papier, dann mit CYP)

$$f (plus x y) = plus (f x) (f y)$$

durch Induktion nach x.

Papier: Verwenden Sie die angegebenen Bezeichnungnen für die Beweis-Schritte, geben Sie IA, IV, IB explizit an.

- 2. Implementieren Sie Peano-Multiplikation und -Potenz.
 - Formulieren, testen (leancheck) und beweisen (Papier, CYP) Sie einige Eigenschaften.
 - CYP: formulieren Sie ggf. Hilfssätze als Axiome, d.h., ohne Beweis—aber mit Tests.
- 3. Für zweistelliges min und max auf \mathbb{N} :
- (a) Geben Sie eine äquivalente vollständige Spezifikation an, die keine Fallunterscheidung benutzt.
- (b) Implementieren Sie min und max nur durch Addition und Subtraktion (⊖).
- (c) testen (optional: und beweisen) Sie, daß Ihre Implementierung die Spezifikation erfüllt

Typeset by FoilT_EX –

- 4. Implementieren Sie nur mit min und max:
 - den Median von drei Argumenten
 - den Median von fünf Argumenten

Geben Sie Tests an (optional: Beweis)

- 5. für das TRS $R = \{A(A(D,x),y) \rightarrow A(x,A(x,y))\}$ über der Signatur $\Sigma = \{D/0,A/2\}$, vgl. frühere Aufgabe,
- (a) die Menge (Folge) aller R-Normalformen ist $N_0 = D, N_1 = A(D, N_0), \ldots, N_{k+1} = A(D, N_k), \ldots$ warum gibt es keine anderen R-Normalformen?
- (b) Die R-Normalform von $A(N_l, N_r)$ ist N_k mit $k = 2^l + r$.
 - i. Geben Sie Beispiele an (auf Papier oder maschinell)
 - ii. beweisen Sie durch vollständige Induktion nach l. (Auf Papier, aber mit korrekten Bezeichnungen.)

Polymorphie

Definition, Motivation

Beispiel: binäre Bäume mit Schlüssel vom Typ e

- Definition:
 - ein polymorpher Datentyp ist ein *Typkonstruktor* (= eine Funktion, die Typen auf einen Typ abbildet)
- unterscheide: Tree ist der Typkonstruktor,
 Branch ist ein Datenkonstruktor

Beispiele f. Typkonstruktoren (I)

- Kreuzprodukt: data Pair a b = Pair a b
- disjunkte Vereinigung:

```
data Either a b = Left a | Right b
data Maybe a = Nothing | Just a
```

- Haskell-Notation für Produkte: (Z, True)::(N, Bool)
 - das Komma (,) = Name des Typ-Konstruktors =
 Name des Daten-Konstruktors
 - ist gefährlich (wg. Verwechslung), aber nützlich und empfohlen, falls der Typ genau einen Konstruktor hat
 - Komma-Notation für Produkte mit $0, 2, 3, \dots$ Komponenten
 - 0 Komponenten = die Einermenge: data () = ()

Beispiele f. Typkonstruktoren (II)

• binäre Bäume (Schlüssel in der Verzweigungsknoten)

einfach (vorwärts) verkettete <u>Listen</u>

 Bäume mit Knoten beliebiger Stelligkeit, Schlüssel in jedem Knoten

```
data Tree a = Node a (List (Tree a))
```

Polymorphe Funktionen

- Beispiele:
 - Spiegelbild einer Liste:

```
reverse :: forall e . List e -> List e
```

Verkettung von Listen mit gleichem Elementtyp:

Knotenreihenfolge eines Binärbaumes:

```
preorder :: forall e . Bin e -> List e
```

- Def: der Typ einer polymorphen Funktion beginnt mit All-Quantoren für Typvariablen.
- Bsp: Datenkonstruktoren polymorpher Typen.

Bezeichnungen f. Polymorphie

```
data List e = Nil | Cons e (List e)
```

- List ist ein *Typkonstruktor*
- List e ist ein polymorpher Typ
 (ein Typ-Ausdruck mit Typ-Variablen)
- List Bool ist ein monomorpher Typ
 (entsteht durch Instantiierung: Substitution der Typ-Variablen durch Typen)
- polymorphe Funktion:

```
reverse:: forall e . List e -> List e
monomorphe Funktion: xor:: List Bool -> Bool
polymorphe Konstante: Nil::forall e. List e
```

Operationen auf Listen (I)

```
data List a = Nil | Cons a (List a)
```

• append xs ys = case xs of
Nil ->
Cons x xs' ->

• Ü: formuliere, teste und beweise: append ist assoziativ.

```
• reverse xs = case xs of
Nil ->
Cons x xs' ->
```

• Ü: beweise:

```
forall xs ys : reverse (append xs ys)
== append (reverse ys) (reverse xs)
```

Von der Spezifikation zur Implementierung (II)

• Bsp: homogene Listen

```
data List a = Nil | Cons a (List a)
```

Aufgabe: implementiere maximum :: List N -> N

Spezifikation:

```
maximum (Cons x1 Nil) = x1
maximum (append xs ys) = \max (\maximum xs)
```

• - substitutiere xs = Nil, erhalte

```
maximum (append Nil ys) = maximum ys
= max (maximum Nil) (maximum ys)
d.h. maximum Nil sollte das neutrale Element für max
(auf natürlichen Zahlen) sein, also 0 (geschrieben Z).
```

```
- substitutiere xs = Cons x1 Nil, erhalte
    maximum (append (Cons x1 Nil) ys)
    = maximum (Cons x1 ys)
    = max (maximum (Cons x1 Nil)) (maximum ys)
    = max x1 (maximum ys)
```

Damit kann der aus dem Typ abgeleitete Quelltext

```
maximum :: List N -> N
maximum xs = case xs of
Nil ->
Cons x xs' ->
```

ergänzt werden.

Vorsicht: für min, minimum funktioniert das nicht so, denn min hat für N kein neutrales Element.

Operationen auf Listen (II)

• Die vorige Implementierung von reverse ist (für einfach verkettete Listen) nicht effizient (sondern quadratisch, vgl.

```
https://accidentallyquadratic.tumblr.com/)
```

Besser ist Verwendung einer Hilfsfunktion

```
reverse xs = rev_app xs Nil
mit Spezifikation
```

```
rev_app xs ys = append (reverse xs) ys
```

• noch besser ist es, keine Listen zu verwenden https://www.imn.htwk-leipzig.de/~waldmann/ etc/untutorial/list-or-not-list/

Operationen auf Bäumen

```
data List e = Nil | Cons e (List e)
data Bin e = Leaf | Branch (Bin e) e (Bin e)
Knotenreihenfolgen
```

- preorder :: forall e . Bin e -> List e
 preorder t = case t of ...
- entsprechend inorder, postorder
- und Rekonstruktionsaufgaben
- Adressierug von Knoten (False = links, True = rechts)
- get :: Bin e -> List Bool -> Maybe e
- positions :: Bin e -> List (List Bool)

Statische Typisierung und Polymorphie

- Def: dynamische Typisierung:
 - die Daten (zur Laufzeit des Programms, im Hauptspeicher) haben einen Typ
- Def: statische Typisierung:
 - Bezeichner, Ausdrücke (im Quelltext) haben einen Typ, dieser wird zur Übersetzungszeit (d.h., ohne Programmausführung) bestimmt
 - für jede Ausführung des Programms gilt: der statische Typ eines Ausdrucks ist gleich dem dynamischen Typ seines Wertes

- Typeset by FoilT_EX -

Bsp. für Programm ohne statischen Typ

Javascript

```
function f (x) {
  if (x > 0) {
    return function () { return 42; }
  } else { return "foobar"; } } }
```

Dann: Auswertung von f(1) () ergibt 42, Auswertung von f(0) () ergibt Laufzeit-Typfehler.

entsprechendes Haskell-Programm ist statisch fehlerhaft

```
f x = case x > 0 of

True -> \setminus () -> 42

False -> "foobar"
```

Nutzen der stat. Typisierung und Polymorphie

- Nutzen der statischen Typisierung:
 - beim Programmieren: Entwurfsfehler werden zu Typfehlern, diese werden zur Entwurfszeit automatisch erkannt ⇒ früher erkannte Fehler lassen sich leichter beheben
 - beim Ausführen: keine Lauzeit-Typfehler ⇒ keine
 Typprüfung zur Laufzeit nötig, effiziente Ausführung
- Nutzen der Polymorphie:
 - Flexibilität, nachnutzbarer Code, z.B. Anwender einer Collection-Bibliothek legt Element-Typ fest (Entwickler der Bibliothek kennt den Element-Typ nicht)
 - gleichzeitig bleibt statische Typsicherheit erhalten

- Typeset by FoilT_EX -

Konstruktion von Objekten eines Typs

Aufgabe (Bsp):

```
x: Either (Maybe ()) (Pair Bool ()) Lösung (Bsp):
```

• der Typ Either a b hat Konstruktoren Left a | Right b. Wähle Right b.

Die Substitution für die Typvariablen ist

```
a = Maybe (), b = Pair Bool ().

x = Right y mit y :: Pair Bool ()
```

• der Typ Pair a b hat Konstruktor Pair a b.

die Substitution für diese Typvariablen ist

```
a = Bool, b = ().
```

```
y = Pair p q mit p :: Bool, q :: ()
```

- der Typ Bool hat Konstruktoren False | True, wähle p = False. der Typ () hat Konstruktor (), also q=()
- Insgesamt x = Right y = Right (Pair False ())
 Vorgehen (allgemein)
- bestimme den Typkonstruktor
- bestimme die Substitution f
 ür die Typvariablen
- wähle einen Datenkonstruktor
- bestimme Anzahl und Typ seiner Argumente
- wähle Werte für diese Argumente nach diesem Vorgehen.

Bestimmung des Typs eines Bezeichners

Aufgabe (Bsp.) bestimme Typ von x (erstes Arg. von get):

```
at :: List N -> Tree a -> Maybe a
at p t = case t of
Node f ts -> case p of
Nil -> Just f
Cons x p' -> case get x ts of
Nothing -> Nothing
Just t' -> at p' t'
```

Lösung:

• bestimme das Muster, durch welches x deklariert wird.

```
Lösung: Cons x p' ->
```

bestimme den Typ diese Musters

- Lösung: ist gleich dem Typ der zugehörigen Diskriminante p
- bestimme das Muster, durch das p deklariert wird
 Lösung: at p t =
- bestimme den Typ von p
 Lösung: durch Vergleich mit Typdeklaration von at (p ist
 das erste Argument) p :: Position, also
 Cons x p' :: Position = List N, also x :: N.

```
COID A P • • • COLCIOI HISC II, aloc A • • IV
```

- Vorgehen zur Typbestimmung eines Namens:
- finde die Deklaration (Muster einer Fallunterscheidung oder einer Funktionsdefinition)
- bestimme den Typ des Musters (Fallunterscheidung: Typ der Diskriminante, Funktion: deklarierter Typ)

Übung Polymorphie

Geben Sie alle Elemente dieser Datentypen an:

```
- Maybe ()
- Maybe (Bool, Maybe ())
- Either ((), Bool) (Maybe (Maybe Bool))
```

- Operationen auf Listen:
 - append, reverse, rev_app
- Operationen auf Bäumen:
 - preorder, inorder
 - get, (positions)

Typeset by FoilT_EX –

Hausaufgaben

 für die folgenden Datentypen: geben Sie einige Elemente an (ghci), geben Sie die Anzahl aller Elemente an (siehe auch autotool-Aufgabe)

```
(a) Maybe (Maybe Bool)
(b) Either (Bool, ()) (Maybe ())
(c) Foo (Maybe (Foo Bool)) mit
  data Foo a = C a | D
```

- (d) geben Sie einen Typ mit 100 (Zusatz: 1000) Elementen an und (insgesamt) wenig Daten-Konstruktoren. (Vgl. frühere Aufgabe, die Frage ist jetzt, ob die Polymorphie hilft, eine kleinere Lösung zu erhalten)
- Implementieren Sie die Post-Order Durchquerung von

Binärbäumen.

(Zusatz: Level-Order. Das ist schwieriger.)

Verwenden Sie nur die in der VL definierten Typen

(data List a = ..., nicht Prelude.[])

und Programmbausteine (case _ of)

3. Beweisen Sie (auf Papier, Zusatz: mit Cyp)

```
forall xs . reverse (reverse xs) == xs
```

Verwenden Sie ggf.

```
rev (app xs ys) = app (rev ys) (rev xs)
```

oder andere Hilfssätze ohne Beweis (aber mit Beispielen und Tests)

4. (von voriger Woche, Typ ist nicht polymorph)

Definitionen ergänzen; Eigenschaften testen (Einzelfälle, Leancheck), beweisen (Papier oder Cyp)

```
data Tree = Leaf | Branch Tree Tree
size :: Tree -> N
leaves :: Tree -> N
branches :: Tree -> N
odd :: N -> Bool
Lemma :
   size t .=. plus (leaves t) (branches t)
Lemma : odd (size t)
```

Folien Induktion über Bäume benutzen.

Lambda-Kalkül: Syntax und dynamische Semantik (Auswertung)

Funktionen als Daten

- bisher: Fkt. definiert d. Gleichg. dbl x = plus x x
- jetzt: durch Lambda-Term dbl = $\ \ \times \ -> \$ plus $\ \times \ \times \ \lambda$ -Terme: mit lokalen Namen (hier: x)
- Funktionsanwendung: $(\lambda x.B)A \to B[x:=A]$ freie Vorkommen von x in B werden durch A ersetzt
- Funktionen sind Daten (Bsp: Cons dbl Nil)
- λ-Kalkül: Alonzo Church 1936, Henk Barendregt 198*
 Henk Barendregt: The Impact of the Lambda Calculus in Logic and Computer Science, Bull. Symbolic Logic, 1997.

https://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.25.9348

Der Lambda-Kalkül

- ist ein Berechnungsmodell,
 vgl. Termersetzungssysteme, Turingmaschine,
 Random-Access-Maschine (= Goto-Programme)
- Syntax: die Menge der Lambda-Terme Λ :
 - jede Variable ist ein Term: $v \in V \Rightarrow v \in \Lambda$
 - Funktionsanwendung (Applikation):

$$F \in \Lambda, A \in \Lambda \Rightarrow @(F, A) \in \Lambda$$
 abstrakte Syntax: 2-stell. Operator @, konkrete Syntax: Leerzeichen (!)

- Funktionsdefinition (Abstraktion): $v \in V \ R \in \Lambda \rightarrow (\lambda v \ R) \in \Lambda$

$$v \in V, B \in \Lambda \Rightarrow (\lambda v.B) \in \Lambda$$

• Semantik: eine Relation \rightarrow_{β} auf Λ (vgl. \rightarrow_{R} für Termersetzungssystem R)

Freie und gebundene Variablen(vorkommen)

- Das Vorkommen von $v \in V$ an Position p in Term t heißt frei, wenn "darüber kein $\lambda v....$ steht"
- Def. fvar(t) = Menge der in t frei vorkommenden Variablen (definiere durch strukturelle Induktion)
- Eine Variable x heißt in A gebunden, falls A einen Teilausdruck $\lambda x.B$ enthält.
- Def. bvar(t) = Menge der in t gebundenen Variablen
- Bsp: $fvar(x(\lambda x.\lambda y.x)) = \{x\}, bvar(x(\lambda x.\lambda y.x)) = \{x,y\},$

Semantik des Lambda-Kalküls: Reduktion \rightarrow_{β}

- Relation \rightarrow_{β} auf Λ (ein Reduktionsschritt)
- Es gilt $t \rightarrow_{\beta} t'$, falls
- $\exists p \in Pos(t)$, so daß
- $t[p] = (\lambda x.B)A \text{ mit } bvar(B) \cap fvar(A) = \emptyset$
- $\bullet \ t' = t[p := B[x := A]]$
 - dabei bezeichnet B[x := A] ein Kopie von B, bei der jedes freie Vorkommen von x durch A ersetzt ist
- Ein (Teil-)Ausdruck der Form $(\lambda x.B)A$ heißt Redex. (Dort kann weitergerechnet werden.)
- Ein Term ohne Redex heißt *Normalform*. (Normalformen sind Resultate von Rechnungen.)

Falsches Binden lokaler Variablen

dieser Ausdruck hat den Wert 15:

$$(\x-> (((\f->\x->x+f8) (\y->x+y)) 3)$$

- Redex $(\lambda f.B)A$ mit $B = \lambda x.x + f8$ und $A = \lambda y.x + y$:
- dort keine \rightarrow_{β} -Reduktion, $bvar(B) \cap fvar(A) = \{x\} \neq \emptyset$.
- falls wir die Nebenbedingung ignorieren, erhalten wir

$$(\x-> ((\x->x + (\y->x+y) 8) 4)) 3$$

mit Wert 16.

 dieses Beispiel zeigt, daß die Nebenbedingung semantische Fehler verhindert

Semantik . . . : gebundene Umbenennung \rightarrow_{α}

- falls wir einen Redex $(\lambda x.B)A$ reduzieren möchten, für den $\mathrm{bvar}(B)\cap\mathrm{fvar}(A)=\emptyset$ nicht gilt, dann vorher dort die lokale Variable x umbenennen (hinter dem λ und jedes freie Vorkommen von x in B)
- Relation \rightarrow_{α} auf Λ , beschreibt *gebundene Umbenennung* einer lokalen Variablen.
- Beispiel $\lambda x. fxz \rightarrow_{\alpha} \lambda y. fyz$. (f und z sind frei, können nicht umbenannt werden)
- Definition $t \to_{\alpha} t'$:
 - $-\exists p \in Pos(t)$, so daß $t[p] = (\lambda x.B)$
 - $-y \notin \text{bvar}(B) \cup \text{fvar}(B)$
 - $-t' = t[p := \lambda y.B[x := y]]$

Umbenennung von lokalen Variablen

```
• int x = 3;
int f(int y) { return x + y; }
int g(int x) { return (x + f(8)); } // g(4) => 15
```

• Darf f (8) ersetzt werden durch f[y := 8] ? - Nein:

```
int x = 3;
int g(int x) { return (x + (x+8)); } // g(4) => 16
```

Das freie x in (x + y) wird fälschlich gebunden.

• Lösung: lokal umbenennen

```
int g(int z) \{ return (z + f(8)); \}
```

dann ist Ersetzung erlaubt

```
int x = 3;
int g(int z) { return (z + (x+8)); } // g(4) => 15
```

Lambda-Terme: verkürzte Notation

Applikation ist links-assoziativ, Klammern weglassen:

$$(\ldots((FA_1)A_2)\ldots A_n)\sim FA_1A_2\ldots A_n$$

Beispiel: $((xz)(yz)) \sim xz(yz)$

Wirkt auch hinter dem Punkt:

$$(\lambda x.xx)$$
 bedeutet $(\lambda x.(xx))$ — und nicht $((\lambda x.x)x)$

geschachtelte Abstraktionen unter ein Lambda schreiben:

$$(\lambda x_1.(\lambda x_2....(\lambda x_n.B)...)) \sim \lambda x_1x_2...x_n.B$$

Beispiel: $\lambda x.\lambda y.\lambda z.B \sim \lambda xyz.B$

Ein- und mehrstellige Funktionen

eine einstellige Funktion zweiter Ordnung:

$$f = \langle x - \rangle (\langle y - \rangle (x * x + y * y))$$

Anwendung dieser Funktion:

$$(f 3) 4 = ...$$

Kurzschreibweisen (Klammern weglassen):

• Übung:

```
gegeben t = \ f x \rightarrow f (f x)
bestimme t succ 0, t t succ 0,
t t t succ 0, ...
```

Lambda-Ausdrücke in C#

Beispiel (Fkt. 1. Ordnung)

```
Func<int, int> f = (int x) => x*x; f (7);
```

Übung (Fkt. 2. Ordnung) — ergänze alle Typen:

```
??? t = (??? g) \Rightarrow (??? x) \Rightarrow g (g (x));

t (f)(3);
```

Anwendungen bei Streams, später mehr

```
(new int[]\{3,1,4,1,5,9\}). Select(x => x * 2); (new int[]\{3,1,4,1,5,9\}). Where(x => x > 3);
```

Übung: Diskutiere statische/dynamische Semantik von

```
(new int[]\{3,1,4,1,5,9\}). Select(x => x > 3); (new int[]\{3,1,4,1,5,9\}). Where(x => x * 2);
```

Lambda-Ausdrücke in Java

- funktionales Interface (FI): hat genau eine Methode
- Lambda-Ausdruck ("burger arrow") erzeugt Objekt einer anonymen Klasse, die FI implementiert.

```
interface I { int foo (int x); }
I f = (x)-> x+1;
System.out.println (f.foo(8));
```

vordefinierte Fls:

```
import java.util.function.*;
Function<Integer, Integer> g = (x)-> x*2;
    System.out.println (g.apply(8));
Predicate<Integer> p = (x)-> x > 3;
    if (p.test(4)) { System.out.println ("foo"); }
```

Lambda-Ausdrücke in Javascript

\$ node > let $f = function (x) \{return x+3; \}$ undefined > f(4)> ((x) => (y) => x+y) (3) (4)> ((f) => (x) => f(f(x))) ((x) => x+1) (0)

Übung Lambda-Kalkül

- abstrakten Syntaxbaum und Normalform von SKKc, wobei $S = \lambda xyz.xz(yz), K = \lambda ab.a$,
- (mit data N=Z|S N) bestimme Normalform von ttSZ für $t=\lambda fx.f(fx)$,
- \bullet definiere Λ als algebraischen Datentyp

```
implementiere size :: L -> Int,
depth :: L -> Int.
implementiere bvar :: L -> S.Set String,
fvar :: L -> S.Set String,
```

siehe Folie mit Definitionen und dort angegebene Testfälle

benutze import qualified Data.Set as S,
API-Dokumentation: https://hackage.haskell.
org/package/containers/docs/Data-Set.html

Teillösung:

```
bvar :: L -> S.Set String
bvar t = case t of
   Var v    -> S.empty v
   App l r -> S.union (bvar l) (bvar r)
   Abs v b -> S.insert v (bvar b)
```

Hausaufgaben

- fvar implementieren (vgl. Übungsaufgabe bvar),
 Testfälle vorführen (aus Skript und weitere)
- 2. für $t = \lambda f x. f(fx)$: AST von ttSZ zeichnen, Normalform bestimmen: 1. auf Papier, 2. mit ghci.

```
let t = \ f x \rightarrow f (f x)
```

möglichst kleine Lambda-Ausdrücke (vom Typ N) angeben (Variablen, Applikation, Abstraktion, Konstruktoren von data N, keine Funktionen wie plus, mal), die eine große Normalform haben (mit ghciausrechnen)

- 3. für $s = \lambda xyz.xz(yz)$ und $k = \lambda ab.a$:
 - Auswertung von skk0 in Haskell, in Javascript (node), optional: in C# (csharp), Java (jshell), oder anderer Sprache
 - (autotool) Reduktionen im Lambda-Kalkül

L-K.: statische Semantik (Typisierung)

Motivation, Plan

- (Mathematik) Funktion $f: A \rightarrow B$ als Relation zw. Definitionsbereich A und Wertebereich B
- ◆ (Programmiersprache) Typ-Deklaration f :: A -> B
- (Softwaretechnik) der Typ eines Bezeichners ist seine beste Dokumentation— denn sie wird bei *jeder* Code-Änderung maschinell überprüft. andere (schlechtere) Varianten: 1. niemals, 2. nur in Entwurfsphase (bei separater Entwurfssprache)
- funktionale Programmierung (Funktionen als Daten): A und B können selbst Mengen von Funktionen sein

Grundlagen zur Typisierung

- statische Typisierung: jeder Bezeichner, jeder Ausdruck (im Quelltext) hat einen Typ
 - dynamische Typisierung: jeder Wert (im Hauptspeicher)
 hat einen Typ
- statische Typisierung verhindert Laufzeit(typ)fehler
 - ⇒ alle wichtigen Laufzeiteigenschaften sollen als Typ-Aussagen formuliert werden
- flexible (wiederverwendbare) und sichere Software durch generische Polymorphie (Typ-Argumente)
- für statische Typisierung unterscheiden wir:
 - Typ-Deklaration (der Typ steht sichtbar im Quelltext)
 - Typ-Inferenz (der Typ wird vom Compiler bestimmt)

C#/Java: polym. deklariert, ML/Haskell: polym. inferiert

Einfache (monomorphe) Typen

- benutzt diese Typisierungsregeln:
 - Abstraktion *erzeugt* Funktions-Typ: wenn $x::T_1$ und $B::T_2$, dann $\lambda x.B::T_1\to T_2$
 - Applikation benutzt Funktions-Typ: wenn $f::(T_1 \to T_2)$ und $a::T_1$, dann $fa::T_2$ das für f deklarierte T_1 muß genau der Typ von a sein
- damit kein sicherer wiederverwendbarer Code möglich: denn Bibliotheksfunktionen (Bsp. f) können anwendungsspezifische Typen (Bsp: von a) nicht kennen
- (schlechte) Auswege: keine statische Typisierung
 - für die Bibliothek (z.B. Object in Mittelalter-Java)
 - für die Sprache (Bsp: Sprachen mit P (nicht Pascal))
 oder keine anwendungsspez. Typen (sondern int)

Typ-Abstraktion und -Applikation

• Fkt. mit monomorphem Typ (Bsp):

```
f:: Bool -> N; f x = S Z; f False
-- Deklaration, Definition, Anwendung
```

Fkt. mit polymorphem Typ (Bsp), mit Typ-Abstraktion

```
g:: forall (t:: Type) . t \rightarrow t; g x = x
```

- Typ-Applikation: g @N ergibt monomorphes N → N
 dann (Daten-)Applikation: (g @N) Z
- Beispiele: g @Bool (g @Bool False)

```
data List a = Nil | Cons a (List a)
Cons :: forall (a :: Type) . a -> List a -> List a
Cons @N Z (Nil @N)
```

Polymorphie: Notation

volle Notation in Haskell leider umständlich:

```
{-# language ExplicitForall, KindSignatures #-}
import Data.Kind (Type)
g :: forall (t :: Type) . t -> t ; g x = x
{-# language TypeApplications #-} g @N Z
```

• in Java

```
class C { static <A> A id (A x) {return x;}}
C.<Integer>id(9); // Integer = der Box-Typ von int
```

• in C#

```
class C { public static A id<A> (A x) {return x; } }
C.id<int> (9)
```

Polymorphie: Notation: Abkürzungen

(Haskell) in der Typ-Abstraktion:
 Deklaration (Quantor) der Typvariablen weglassen

```
g:: forall (t:: Type) . t \rightarrow t; g x = x
h:: t \rightarrow t; h x = x
```

• (Haskell, Java, C#) unsichtbare Typ-Applikation: Typ-Argumente werden durch Compiler inferiert

```
g Z ; C.id(9) ; C.id(9)
```

- wie bei jeder Abkürzung: das kann
 - nützlich sein
 - aber auch irreführend

Verkürzte Notation für Typen

Der Typ-Pfeil ist rechts-assoziativ:

$$T_1 \to T_2 \to \cdots \to T_n \to T \text{ bedeutet}$$

 $(T_1 \to (T_2 \to \cdots \to (T_n \to T) \cdots))$

• das paßt zu den Abkürzungen für mehrstellige Funkt.:

```
\lambda(x::T_1).\lambda(x::T_2).(B::T) hat den Typ (T_1 \to (T_2 \to T)), mit o.g. Abkürzung T_1 \to T_2 \to T.
```

• Beispiel: wir schreiben

```
plus :: N \rightarrow N \rightarrow N; plus x y = case x of ... a = plus 2 3
```

es bedeutet

```
plus :: N -> (N -> N); plus = \ x -> \ y ->  case .. a = (plus 2) 3
```

Nützliche Funktionen höherer Ordnung

```
• compose :: (b \rightarrow c) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))
-- :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c
compose f g x = f (g x)
```

diese Funktion in der Standard-Bibliothek: der Operator . (Punkt)

• flip:: (a -> b -> c) -> b -> a -> c aus dem Typ folgt schon die Implementierung!

```
flip f x y = ...
```

apply f x = f x
 das ist der Operator \$ (Dollar), benutzt zum Einsparen
 von Klammern: f (g (h x)) = f \$ g \$ h x
 denn (\$) ist rechts-assoziativ

Der allgemeinste Typ eines Ausdrucks

- Haskell benutzt Algorithmus W von Damas/Milner, der zu jedem Lambda-Ausdruck A
 - bestimmt, ob A typisierbar ist (ob ein T exist. mit A :: T)
 - wenn ja, einen *allgemeinsten Typ* T_p von A inferiert (für jedes T mit A::T exists. Subst. σ mit $T_p\sigma=T$)
- Luis Damas, Robin Milner: Principal Type Schemes for Functional Programs, 1982; Roger Hindley: The Principal Type Scheme of an object in Combinatory Logic, 1969; Mark P. Jones: Typing Haskell in Haskell, 2000
 - http://web.cecs.pdx.edu/~mpj/thih/
- der deklarierte Typ muß Instanz des inferierten Typs sein
- deswegen könnte man Typ-Deklarationen weglassen, sollte man aber nicht (Typ-Dekl. ist Dokumentation)

Beispiel für Typ-Bestimmung

Aufgabe: bestimme den allgemeinsten Typ von $\lambda fx.f(fx)$

- Ansatz mit Typvariablen $f::t_1,x::t_2$
- betrachte (fx): der Typ von f muß ein Funktionstyp sein, also $t_1=(t_{11}\to t_{12})$ mit neuen Variablen t_{11},t_{12} . Dann gilt $t_{11}=t_2$ und $(fx)::t_{12}$.
- betrachte f(fx). Wir haben $f::t_{11} \to t_{12}$ und $(fx)::t_{12}$, also folgt $t_{11}=t_{12}$. Dann $f(fx)::t_{12}$.
- betrachte $\lambda x.f(fx)$. Aus $x::t_{12}$ und $f(fx)::t_{12}$ folgt $\lambda x.f(fx)::t_{12}\to t_{12}$.
- betrachte $\lambda f.(\lambda x.f(fx))$.

 Aus $f::t_{12} \to t_{12}$ und $\lambda x.f(fx)::t_{12} \to t_{12}$ folgt $\lambda fx.f(fx)::(t_{12} \to t_{12}) \to (t_{12} \to t_{12})$

Stelligkeit von Funktionen

• ist plus in flip richtig benutzt? Ja!

```
flip :: (a -> b -> c) -> b -> a -> c

data N = Z | S N

plus :: N -> N -> N

plus (S Z) (S (S Z)); flip plus (S Z) (S (S Z))
```

- beachte Unterschied zwischen:
 - Term-Ersetzung: Funktionssymbol → Stelligkeit abstrakter Syntaxbaum: Funktionss. über Argumenten
 - Lambda-Kalkül: jeder Lambda-Ausdruck beschreibt einstellige Funktion Simulation mehrstelliger Funktionen wegen Isomorphie zwischen $(A \times B) \to C$ und $A \to (B \to C)$
- Übung/Beispiele: die Funktionen curry, uncurry

Beispiele Fkt. höherer Ord.

Haskell-Notation für Listen:

```
data List a = Nil \mid Cons a (List a)
data [a] = [] \mid a : [a]
```

Verarbeitung von Listen:

```
filter:: (a -> Bool) -> [a] -> [a] takeWhile:: (a -> Bool) -> [a] -> [a] partition:: (a -> Bool) -> [a] -> ([a],[a])
```

Vergleichen, Ordnen:

```
nubBy :: (a -> a -> Bool) -> [a] -> [a]
data Ordering = LT | EQ | GT
minimumBy
:: (a -> a -> Ordering) -> [a] -> a
```

 When You Should Use Lists in Haskell (Mostly, You Should Not) https://arxiv.org/abs/1808.08329

Fkt. höherer Ord. für Folgen

Folgen, repräsentiert als balancierte Bäume:

```
module Data.Sequence where
data Seq a = ...
   -- keine sichtbaren Konstruktoren!
fromList :: [a] -> Seq a
filter :: (a -> Bool) -> Seq a -> Seq a
takeWhile :: (a -> Bool) -> Seq a -> Seq a
```

Anwendung:

```
import qualified Data. Sequence as Q xs = Q. from List [1, 4, 9, 16] ys = Q. filter (x -> 0 == mod x 2) xs
```

Fkt. höherer Ord. für Mengen

Mengen, repräsentiert als balancierte Such-Bäume:

```
module Data.Set where

data Set a = ...

-- keine sichtbaren Konstruktoren!

fromList :: Ord a => [a] -> Set a

filter :: Ord a => (a -> Bool) -> Set a ->

das Typ-Constraint Ord a schränkt die Polymorphie ein

(der Typ, durch den die Typ-Variable a instantiiert wird,

muß eine Vergleichsmethode haben)
```

Anwendung:

```
import qualified Data. Set as S

xs = S.fromList [1, 4, 9, 16]

ys = S.filter (\x -> 0 == mod x 2) xs
```

Polymorphe Unterprogr. in anderen Sprachen

- C# und Java haben: statische Typisierung, Polymorphie (Inferenz für Typ-Argum., nicht für allgemeinsten Typ), Lambda-Ausdrücke (anonyme Funktionen), aber
 - polymorphe Unterprogramme: nur als Methoden,
 - Funktione als Daten: nur als Lambdas (Objekte)
 - * deren Typ kann nicht inferiert werden (für var)
 - * und keine neuen Typvariablen einführen
- Func<int, Func<bool, int>> k = x => y => x;
 class C{public static A k<A,B>(A x,B y) {return x;}
- import java.util.function.*;
 Function<Integer,Function<Boolean,Integer>>
 k = (x) -> (y) -> x;
 k.apply(0).apply(true)

Zusammenfassung, Ausblick

- generische Polymorphie entsteht durch allgemeinste Typen von Lambda-Ausdrücken (Bps: $\lambda x.x$)
- generische Polymorphie ist nützlich für flexibel verwendbare Container (Folge von ..., Baum von ...)
- deren Implementierung kann über Element-Typ gar nichts voraussetzen (denn dieser ist all-quantifiziert)
- die Steuerung der Implementierung erfolgt dann durch Funktionen als Daten (Bsp: eine Vergleichsfunktion)
- die Implementierung ist dann eine Funktion h\u00f6herer (zweiter) Ordnung
- später: implizite Übergabe dieser Funktionen als Wörterbücher (Methodentabellen) von Typklassen
- aber vorher: Rekursionmuster (als Fkt. höherer Ord.)

Typeset by FoilT_EX –

Übung

 den allgemeinsten Typ eines Lambda-Ausdrucks bestimmen, Beispiel

```
compose :: compose = \ f g ->\ \ x -> f (g x)
```

Musterlösung:

- wegen g x muß g :: a -> b gelten,
 dann x :: a und g x :: b
- wegen f (g x) muß f :: b -> c gelten,
 dann f (g x):: c
- $dann \setminus x -> f (g x) :: a -> c$
- dann

```
\ f g -> .. :: (b->c) -> (a->b) -> (a->c)
```

• Isomorphie zwischen $(A \times B) \to C$ und $A \to (B \to C)$: falls A, B, C endlich: die Größen beider Mengen ausrechnen und vergleichen für A = B = C = Bool: ein Element von $(A \times B) \to C$ angeben und das dazugehörige Element von $A \to (B \to C)$.

begründen, daß es im allgemeinen keine Isomorphie zu $(A \to B) \to C$ gibt (die Größe ausrechnen)

Implementierung von takeWhile

```
takeWhile :: (a -> Bool) -> List a -> List
takeWhile p xs = case xs of
Nil -> Nil
Cons x xs' -> case p x of
```

False -> Nil
True -> Cons x (takeWhile p xs')

Hausaufgaben

im SS 21: Aufgaben 1, 3, 4, 5

1. für die Lambda-Ausdrücke

- (a) $\lambda fghxy.f(gx)(hy)$:
- (b) $(\lambda x.xx)(\lambda y.yy)$

AST zeichnen, allgemeinsten Typ bestimmen, falls möglich

- (1. von Hand, mit Begründung,
- 2. mit ghci überprüfen)
- 2. für die Ausdrücke

flip

```
flip flip flip flip ...
```

jeweils Argumente $a_1a_2...$ angeben (passende Anzahl), so daß der Wert von

flip flip ... flip a1 a2 ... gleich True ist.

Dabei alle Typargumente für alle flip explizit angeben.

 in Haskell: Lambda-Ausdrücke mit diesen Typen angeben, falls möglich:

$$a \rightarrow (a \rightarrow c) \rightarrow c$$

 $a \rightarrow b$
 $(a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c$

mit ghci überprüfen (Typen anzeigen lassen)

die Ausdrücke dann auch mit passenden Argumenten aufrufen, so daß der Wert True ist (oder von einem andern data-Typ, jedenfalls keine Funktion)

- 4. (einige der) Funktionen compose, flip, curry, uncurry
 - in C# (csharp) und Java (jshell) deklarieren (vorher prüfen, ob es die schon gibt) (anhand von Primärquellen) und aufrufen (dabei Typ-Argumente explizit angeben)

 Den Typ für 2-Tupel aus der jeweiligen Standardbibliothek benutzen.
- 5. die Funktionen partition, span

- (a) aufrufen (in ghci Beispiele vorführen), dabei anwenden auf eine Liste von Bool
- (b) die API-Dokumentation aufsuchen (hackage.org)
- (c) die dort angegebenen Eigenschaften als Leancheck-Property überprüfen
- (d) die entsprechenden Funktionen aus Data. Sequence aufrufen
- (autotool) Typisierung im Lambda-Kalkül
- (autotool) dropWhile implementieren und beweisen

```
xs=append (takeWhile p xs) (dropWhile p xs)
```

Rekursionsmuster

Rekursion über Bäume (Beispiele)

```
• data Tree a = Leaf
              | Branch (Tree a) a (Tree a)
• summe :: Tree N -> N
 summe t = case t of
   Leaf -> 0
   Branch l k r ->
     plus (summe 1) (plus k (summe r))
● preorder :: Tree a -> List a
 preorder t = case t of
   Leaf -> Nil
   Branch l k r ->
     Cons k (append (preorder 1) (preorder r))
```

Rekursion über Bäume (Schema)

```
f :: Tree a -> b
f t = case t of
  Leaf \rightarrow ...
  Branch l k r \rightarrow ... (f l) k (f r)
dieses Schema ist eine Funktion höherer Ordnung:
fold :: ( ... ) -> ( ... ) -> (Tree a -> b)
fold leaf branch = \ \ t \rightarrow case t of
  Leaf -> leaf
  Branch l k r ->
     branch (fold leaf branch 1)
              k (fold leaf branch r)
summe = fold Z (\ x y z-> plus x (plus y z))
(bei Aufruf ist dann x=summe 1, y=k, z=summe r)
```

Rekursion über Listen (Bsp. und Schema)

```
and :: List Bool -> Bool
and xs = case xs of
  Nil -> True ; Cons x xs' -> x && and xs'
length :: List a -> N
length xs = case xs of
  Nil -> Z ; Cons x xs' -> S (length xs')
fold :: b -> ( a -> b -> b ) -> List a -> b
fold nil cons xs = case xs of
    Nil -> nil
    Cons x xs' -> cons x ( fold nil cons xs'
and = fold True (\&\&)
length = fold Z ( \setminus x y -> S y)
```

Rekursionsmuster (Prinzip)

```
• data List a = Nil | Cons a (List a)
fold ( nil :: b ) ( cons :: a -> b -> b )
    :: List a -> b
```

- Rekursionsmuster anwenden
 - = jeden Konstruktor durch eine passende Funktion ersetzen
 - = (Konstruktor-)Symbole *interpretieren* (durch Funktionen)
 - eine *Algebra* angeben (Signatur = Menge der Konstruktoren, Universum = Resultattyp des Musters)
- \bullet length = fold Z (\ _ l -> S l)

Rekursionsmuster (Merksätze)

aus dem Prinzip ein Rekursionsmuster anwenden = jeden Konstruktor durch eine passende Funktion ersetzen folgt:

- Anzahl der Muster-Argumente = Anzahl der Konstruktoren (plus eins für das Datenargument)
- Stelligkeit eines Muster-Argumentes = Stelligkeit des entsprechenden Konstruktors
- Rekursion im Typ ⇒ Rekursion im Muster
 (Bsp: zweites Argument von Cons)
- zu jedem rekursiven Datentyp gibt es genau ein passendes Rekursionsmuster

- Typeset by FoilT_EX -

Argumente für Rekursionsmuster finden

systematisches experimentelles Vorgehen zur Lösung von: "Schreiben Sie Funktion $f:T\to R$ als fold"

- eine Beispiel-Eingabe ($t \in T$) notieren (als Baum zeichnen, Knoten = Konstruktoren)
- für jeden Teilbaum s von t, der den Typ T hat: den Wert von f(s) in (neben) Wurzel von s schreiben
- daraus Testfälle für die Funktionen ableiten,
 die die Konstrukten ersetzen
 diese Fkt. sind die Argumente des Rekursionsmusters

Beispiel: reverse :: List a -> List a

Rekursionsschema f. mehrstellige Fkt.

- fold hat immer genau ein Daten-Argument (in welchem die Konstruktoren ersetzt werden)
- wie stellt man mehrstellige Funktionen dar? Bsp.

```
append :: List a -> List a -> List a
```

Lösung: das ist gar nicht zweistellig, sondern

```
append :: List a -> (List a -> List a)
```

• fold **über 1. Arg., Resultat ::** List a -> List a

das ist systematisches symbolisches Vorgehen

Rekursionsmuster (Peano-Zahlen)

aus dem Typ das Rekursionsschema ableiten:

```
data N = Z | S N
fold :: ...
fold z s n = case n of
        Z   -> _
        S n' -> _
```

- Bsp: verdoppeln dbl :: $N \rightarrow N$; dbl = fold _ _
- Bsp: mit Fold über erstem Arg.

```
plus = fold ...
times = fold ...
```

Herleitung d. Beispiele oder d. Umformung (vgl. app)

Nicht durch Rekursionmuster darstellbare Fkt.

- Beispiel: data $N=Z\mid S\mid N,$ $f:N\to \text{Bool}, f(x)=x \text{ ist durch 3 teilbar}$
- wende eben beschriebenes Vorgehen an,
- stelle fest, daß die durch Testfälle gegebene Spezifikation nicht erfüllbar ist
- Beispiel: binäre Bäume mit Schlüssel in Verzweigungsknoten,

```
f: {\tt Tree} \ {\tt k} 	o {\tt Bool}, f(t) = {\tt ,} t \ {\sf ist h\"{o}hen-balanciert (erf\"{u}llt die AVL-Bedingung)}^{"}}
```

Darstellung mit Fold und Projektion

- $f: \texttt{Tree} \ k \to \texttt{Bool},$ $f(t) = \texttt{,}t \ \text{ist h\"{o}hen-balanciert (erf\"{u}llt die AVL-Bedingung)"}$ $f \ \textit{ist nicht} \ \text{als fold darstellbar}$
- $g: \text{Tree } \mathbf{k} \to \text{Pair Bool N}; \ g(t) = (f(t), \text{height}(t))$ g ist als fold darstellbar
- dann f t = first (g t) mit Projektion
 first::Pair a b -> a; first (Pair x y) = x
- NB: alternativ: *punktfreie* Notation f = first . g der (fehlende) Punkt ist das Argument t, nicht der Kompositions-Operator (.); diese Bezeichnung ist übernommen aus linearer Algebra: Rechnen mit Vektoren/Matrizen ohne Notation von Indices.

- Typeset by FoilT_EX -

Zusammenfassung Rekursionmuster

- zu jedem (rekursiven) algebraischen Datentyp gibt es genau ein Rekursionmuster (der übliche Name ist fold) das kann systematisch (mechanisch) konstruiert werden (NB: Konstruktion auch für nicht rekursive Typen anwendbar und nützlich, siehe Aufgabe)
- der *Grund* ist: algebraischer Datentyp = Signatur Σ , Instanz eines Rekursionsmusters = eine Σ -Algebra
- das Hilfsmittel zur Notation ist: Funktion höherer Ordnung
- der softwaretechnische Zweck ist:
 die Programmablaufsteuerung (Rekursion) wird vom
 Anwendungsprogramm in die Bibliothek verschoben,
 AP wird dadurch einfacher (kürzer, klarer)

– Typeset by FoilT_EX – 162

Spezialfälle des Fold

jeder Konstruktor durch sich selbst ersetzt,
 mit unveränderten Argumenten: identische Abbildung

```
data List a = Nil | Cons a (List a)
fold :: r -> (a -> r -> r) -> List a -> r
fold Nil Cons (Cons 3 (Cons 5 Nil))
```

jeder Konstruktor durch sich,
 mit transformierten Argumenten v. nicht-rekursiven Typ

```
fold Nil (\x y -> Cons (not x) y)
  (Cons True (Cons False Nil))
```

struktur-erhaltende Abbildung. Diese heißt map.

```
map :: (a -> b) -> List a -> List b
```

Rekursion über Listen aus Std.-Bib.

das vordefinierte Rekursionsschema über Listen ist:

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow ([a] \rightarrow b)
length = foldr ( \ x \ y \rightarrow 1 + y ) 0 \rightarrow Bsp
```

- falsche Argument-Reihenfolge beachten (paßt nicht zu Konstruktor-Reihenfolge)
- foldr (fold right) nicht mit foldl (fold left) verwechseln (foldr ist das "richtige", genau Betrachtung später)
- der Typ von foldr ist tatsächlich allgemeiner (auch für andere Container anwendbar, genaueres später)

Aufgaben:

• append, reverse, concat, inits, tails

Weitere Übungsaufgaben zu Fold

```
● data List a = Nil | Cons a (List a)
fold :: r -> (a -> r -> r) -> List a -> r
```

• schreibe mittels fold (ggf. verwende map)

```
- inits, tails :: List a -> List (List a)
 inits [1,2,3] = [[],[1],[1,2],[1,2,3]]
 tails [1,2,3] = [[1,2,3],[2,3],[3],[]]
-filter:: (a -> Bool) -> List a -> List a
 filter odd [1,8,2,7,3] = [1,7,3]
-partition :: (a -> Bool) -> List a
           -> Pair (List a) (List a)
 partition odd [1,8,2,7,3]
   = Pair [1,7,3] [8,2]
```

- Typeset by FoilT_EX -

Rekursionsmuster für Bäume (Bsp. 2)

- ◆ data Tree a -- Schlüssel NUR in den Blätter
 = Leaf a | Branch (Tree a) (Tree a)
- aus dem Typ das Rekursionsschema ableiten

```
fold :: ...
```

- Beispiele (jeweils zunächst den Typ angeben!)
 - Anzahl der Blätter
 - Anzahl der Verzweigungsknoten
 - Summe der Schlüssel
 - die Tiefe des Baumes
 - der größte Schlüssel
 - der Schlüssel links unten (auf Position $p \in 0^*$)

Übung Rekursionsmuster

- Rekursionsmuster foldr für Listen benutzen (filter, takeWhile, append, reverse, concat, inits, tails)
- Rekursionmuster f
 ür Peano-Zahlen hinschreiben und benutzen (plus, mal, hoch, Nachfolger, Vorg
 änger, minus)
- Rekursionmuster für binäre Bäume mit Schlüsseln nur in den Blättern hinschreiben und benutzen
- Rekursionmuster für binäre Bäume mit Schlüsseln nur in den Verzweigungsknoten benutzen für rekursionslose Programme für:
 - Anzahl der Branch-Knoten ist ungerade (nicht zählen!)
 - Baum (Tree a) erfüllt die AVL-Bedingung

- Typeset by FoilT_EX -

Hinweis: als Projektion auf die erste Komponente eines fold, das Paar von Bool (ist AVL-Baum) und N (Höhe) berechnet.

- Baum (Tree N) ist Suchbaum (ohne inorder)
Hinweis: als Projektion. Bestimme geeignete Hilfsdaten.

Implementierungen für natürlichen Zahlen

- Eigenbau: die Peano-Zahlen (dann sind alle Operationen und Relationen selbst zu programmieren)
- Bibliothek: (dann können ○, +, -, ..., <, >, ...
 benutzt werden deren Typ aber erst später erklärt wird)
 - der Typ Natural (nach import Numeric.Natural) effiziente Repräsentation beleibig großer Zahlen
 - der Typ Word (nach import Data.Word) Maschinenzahl, repräsentiert $\mathbb N$ modulo $2^{\mathsf{Wortbreite}}$

Merksätze

- Word (uint) riskant, Int (int) riskant und falsch (für ℕ)
- sicher sind nur: beliebig groß oder: mit Überlauf-Prüfung.

- Typeset by FoilT_FX -

Hausaufgaben für KW 22

- Wenden Sie die Vorschrift zur Konstruktion des Rekursionsmusters an auf den Typ
 - Bool
 - Maybe a
 - Pair a b
 - Either a b

Jeweils:

- Typ und Implementierung (vorbereiteten Quelltext zeigen)
- Testfälle (in ghci vorführen)
- gibt es diese Funktion bereits? Suchen Sie nach dem Typ mit https://www.haskell.org/hoogle/

2. Rekursionsmuster auf Peano-Zahlen

- plus, mal, hoch vorführen (jeweils realisiert als fold)
 Testen Sie mit Leancheck einige Eigenschaften.
- Beweisen Sie, daß die modifizierte Vorgängerfunktion

```
pre :: N \rightarrow N; pre Z = Z; pre (S \times X) = X kein fold ist.
```

ggf. ergänzende Aufgaben in autotool (nicht vorführen):

- Diese Funktion pre kann jedoch als Projektion einer geeigneten Hilfsfunktion h:: N -> (N,N) realisiert werden. Spezifizieren Sie h und geben Sie eine Darstellung von h als fold an.
- Implementieren Sie die (modifizierte) Subtraktion
 minus mit fold (über das erste Argument) (und pre)

- Typeset by FoilT_EX -

3. Rekursionsmuster auf Eigenbau-Listen:

genaue Erklärung dazu später.)

mit fold und ohne Rekursion implementieren:
 isPrefixOf :: Eq a => List a -> List a -> Bool
 siehe Folie Rekursionsmuster für mehrstellige Funktion.
 (Das Typ-Constraint Eq a bedeutet, daß der Operator
 (==) :: a -> a -> Bool benutzt werden kann,

- die Eigenschaft isPrefixOf xs (append xs ys)
 mit Leancheck überprüfen (für xs :: List Bool)
 Diese Eigenschaft abändern und Gegenbeispiele
 diskutieren.
- für isSuffixOf: 1. konkrete Testfälle, 2. allgemeine Eigenschaft, 3. Implementierung ohne Rekursion, ohne Fold, aber unter Benutzung von reverse angeben.

Typeset by FoilT_EX −

- Rekursionsmuster auf binären Bäumen (Schlüssel in Verzweigungsknoten)
 - Beweisen Sie, daß

```
is_search_tree :: Tree N -> Bool kein fold ist.
```

 diese Funktion kann jedoch als Projektion einer Hilfsfunktion

```
h:: Tree N -> (Bool, Maybe (N,N)) erhalten werden, die für Bäume mit nicht-leerer Schlüsselmenge auch noch deren kleinstes und größtes Element bestimmt. Stellen Sie h als fold dar.
```

Bemerkung zu N beachten. Hier ist Numeric. Natural sinnvoll.

Eingeschränkte Polymorphie

Typklassen in Haskell: Überblick

- abstrakter Datentyp (ADT) = Signatur (Menge von Funktions*deklarationen* = Name und Typ) + Axiome konkreter Datentyp = Algebra = Menge von Funktions*implementierungen*
- Haskell: class C; data T; instance C T where ...

 OO ähnlich: interface C; class T implements C {...}
- Bsp. Klassed der Typen mit totaler Ordnung class Ord a, interface Comparable<E>
- die Auswahl der Implementierung (Methodentabelle):
 - Haskell statisch (abh. von Argument/Resultattypen)
 - OO dynamisch (abh. v. Laufzeittyp des 1. Argumentes)

Typeset by FoilT_EX –

Beispiel

```
sortBy :: (a -> a -> Ordering) -> [a] -> [a] sortBy ( \ x y -> ... ) [False, True, False]
```

Kann mit Typklassen so formuliert werden:

```
class Ord a where
    compare :: a -> a -> Ordering
sort :: Ord a => [a] -> [a]
instance Ord Bool where compare x y = ...
sort [False, True, False]
```

- sort hat eingeschränkt polymorphen Typ
- die Einschränkung (das Constraint Ord a) wird in ein zusätzliches Argument (eine Funktion) übersetzt.
 Entspricht OO-Methodentabelle, liegt aber statisch fest.

Grundwissen Typklassen

- Typklasse schränkt statische Polymorphie ein (Typvariable darf nicht beliebig substitutiert werden)
- Einschränkung realisiert durch Wörterbuch-Argument
 (W.B. = Methodentabelle, Record von Funktionen)
- durch Instanz-Deklaration wird Wörterbuch erzeugt
- bei Benutzung einer eingeschränkt polymorphen
 Funktion: passendes Wörterbuch wird statisch bestimmt
- nützliche, häufige Typklassen: Show, Read, Eq, Ord. (Test.LeanCheck.Listable, Foldable, Monad,...)
- Instanzen automatisch erzeugen mit deriving

- Typeset by FoilT_EX -

Typklassen in Bibliotheks-Schnittstellen

• Realisierung von Mengen durch Suchbäume:

die Polymorphie im Element/Schlüsseltyp muß eingeschränkt werden: der Typ muß total geordnet sein

```
import Data.Set -- aus Bibliothek: containers
fromList :: Ord a => [a] -> Set a
insert :: Ord a => a -> Set a -> Set a
```

- Realisierung von Mengen durch Hashtabellen:
 - ... muß Hashfunktion und Gleichheitstest besitzen

```
import Data.HashSet -- Bib.: unordered-containers
fromList :: (Eq a, Hashable a) => [a] -> HashSet a
insert:: (Eq a, Hashable a) => a -> HashSet a -> HashSet a
```

(Eingeschränkt) polymorphe Literale

- Literal = Bezeichner für feststehendes Datum (Gegensatz: Name in Muster: Bedeutung erst zur Laufzeit durch pattern match festgelegt)
- data List a = Nil | Cons a (List a)
 Nil ist polymorphes Literal
 es gilt Nil :: forall (a::Type) . List a
- Zahl-Literale haben eingschränkt polymorphen Typ

```
class Num a where { (+) :: a->a->a; ..}
instance Num Integer where { ... }
instance Num Natural where { ... }
42 :: Num a => a
```

Unterschiede Typklasse/Interface (Bsp)

Typklasse/Schnittstelle

```
class Show a where show :: a -> String
interface Show { String show (); }
```

Instanzen/Implementierungen

```
data A = A1; instance Show A where .. class A implements Show { .. } entspr. für B
```

• in Java ist Show ein Typ:

```
static String showList(List<Show> xs) { ..
showList (Arrays.asList (new A(), new B()))
```

in Haskell ist Show ein Typconstraint und kein Typ:

```
showList :: Show a => List a -> String
showList [A1,B1] ist Typfehler
```

Unterschiede Typklasse/Interface (Impl.)

Haskell:

```
f:: (Constr1, ..) => t1 -> t2 -> .. -> res

Definition f par1 par2 .. = .. wird (statisch)

übersetzt in f dict1 .. par1 par2 .. = ...

Aufruf f arg1 arg2 .. wird (statisch) übersetzt in
f dict1 .. arg1 arg2 ..
```

Java:

```
inter I { ... f (T2 par2 ) }; T1 implements
bei Aufruf arg1.f(arg2) wird Methodentabelle des
Laufzeittyps von arg1 benutzt (dynamic dispatch)
```

dyn. disp. in Haskell stattdessen durch pattern matching

Typklassen/Interfaces: Vergleich

- grundsätzlicher Unterschied: stat./dynam. dispatch
- die Methodentabelle wird von der Klasse abgetrennt und extra behandelt (als Wörterbuch-Argument):
 - einfachere Behandlg. von Fkt. mit > 1 Argument (sonst: vgl. T implements Comparable<T>)
 - mehrstellige Typconstraints: Beziehungen zwischen mehreren Typen,
 - class Autotool problem solution
 - Typkonstruktorklassen,

```
class Foldable c where toList:: c a -> [a]
data Tree a = ..; instance Foldable Tree
(wichtig für fortgeschrittene Haskell-Programmierung)
```

Generische Instanzen (I)

```
class Eq a where
     (==) :: a -> a -> Bool
Vergleichen von Listen (elementweise)
wenn a in Eq, dann [a] in Eq:
instance Eq a => Eq [a] where
  l == r = case l of
    [] -> case r of
       [] -> True ; y : ys -> False
    x : xs \rightarrow case r of
       [] -> False
      y : ys -> (x == y) && (xs == ys)
```

Übung: wie sieht instance Ord a => Ord [a] aus? (lexikografischer Vergleich)

Generische Instanzen (II)

```
class Show a where
  show :: a -> String
instance Show Bool where
  show False = "False" ; show True = "True"
instance Show a => Show [a] where
  show xs = brackets
          $ concat
          $ intersperse ","
          $ map show xs
instance (Show a, Show b) => Show (a,b) wher
show False = "False"
show ([True, False], True)
  = "([True, False], True)"
```

Benutzung von Typklassen bei Leancheck

 Rudy Matela: LeanCheck: enumerative testing of higher-order properties, Kap. 3 in Diss. (Univ. York, 2017) https://matela.com.br/paper/

```
- Testen von universellen Eigenschaften (\forall a \in A : \forall b \in B : p \ a \ b)
```

rudy-phd-thesis-2017.pdf

- automatische Generierung der Testdaten ...
- $-\dots$ aus dem Typ von p
- ... mittels generischer Instanzen
 https://github.com/rudymatela/leancheck
- beruht auf: Koen Classen and John Hughes: Quickcheck: a lightweight tool for random testing of Haskell programs, ICFP 2000, ("most influential paper award", 2010)

Test.LeanCheck—Beispiel

```
• assoc :: forall a . Eq a =>(a->a->a)->a->a->a->Bool assoc op = \ a b c -> op a (op b c)==op (op a b) c main = check (assoc @[Bool] (++))
```

- dabei werden benutzt (in vereinfachter Darstellung)
 - class Testable p where check :: p -> Bericht Instanzen sind alle Typen, die testbare Eigenschaften repräsentieren

```
instance Testable Bool where
   check False = "falsch"; check True = "OK"
```

- type Tiers a = [[a]]
class Listable a where tiers :: Tiers a
Instanzen sind alle Typen, die sich aufzählen lassen
(Schicht (tier) i: Elemente der Größe i)

instance Listable Bool where tiers = [[False, True]

Testen für beliebige Stelligkeit

warum geht eigentlich beides (einstellig, zweistellig)

- weil gilt instance Testable (Bool -> Bool)
 und instance Testable (Bool -> (Bool -> Bool))
- das wird vom Compiler abgeleitet (inferiert) aus:

```
instance Listable Bool ...; instance Testable Bool
instance (Listable a, Testable b)
   => Testable (a -> b) where { ... }
```

- das ist eine (eingeschränkte) Form der logischen Programmierung (auf Typ-Ebene, zur Compile-Zeit)
- in jedem Inferenz-Schritt wird Code erzeugt (das jeweils passende Wörterbuch wird eingesetzt)

Überblick über Leancheck-Implementierung

```
type Tiers a = [[a]]
 class Listable a where tiers :: Tiers a
 instance Listable Int where ...
 instance Listable a => Listable [a] where ...
• data Result
   = Result { args :: [String], res :: Bool }
 class Testable a where
   results :: a -> Tiers Result // orig: resultiers
 instance Testable Bool ...
 instance (Listable a, Show a, Testable b)
   => Testable (a -> b) ...
● union :: Tiers a -> Tiers a -> Tiers a //orig: (\/)
 mapT :: (a -> b) -> Tiers a -> Tiers b
 concatT :: Tiers (Tiers a) -> Tiers a
 cons2 :: (Listable a, Listable b)
   => (a -> b -> c) -> Tiers c
```

Hausaufgaben

- **1. definieren Sie für** data T = T Bool Bool Bool
 - instance Eq als komponentenweise Gleichheit
 - instance Ord als lexikografische Erweiterung der Standard-Ordnung auf Bool

Formulieren Sie allgemein (d.h., polymorph) als leancheck-Property, daß die Ordnung (<=)

- transitiv
- antisymmetrisch

ist und prüfen Sie das für Numeric. Natural und für T.

```
transitiv :: Ord a => a -> a -> a -> Bool
check (transitiv @T)
```

- **2. definieren Sie für** data T = T Bool Bool Bool
 - instance Semigroup als komponentenweise Disjunktion
 - instance Monoid als dazu passendes neutrales Element

Formulieren Sie die Monoid-Axiome allgemein (d.h., polymorph) als leacheck-Property und überprüfen Sie diese für T.

Geben Sie eine korrekte Monoid-Struktur für T an, die nicht kommutativ ist.

3. für Peano-Zahlen: deklarieren Sie instance Num Nund implementieren Sie dafür (nur) (+) und (*) (mit den bekannten Definitionen als fold)

Test: S (S Z) * S (S (S Z))

```
und: S (S (S Z)) ^ 3 (warum funktioniert das?)
Implementieren Sie fromInteger
(rekursiv, mit if x > 0 then ... else ...)
Test (polymorphes Literal) 42 :: N
```

- 4. Modul Data.Map aus containers, Modul Data.HashMap aus unordered-containers:
 - warum hat fromList ein Typconstraint (oder sogar zwei) für den Schlüsseltyp k, aber nicht für den Werttyp a?
 - Erläutern Sie das Typconstraint (oder dessen Fehlen)
 für singleton.

für Data.Map:

- warum haben die Typen von unionWith und intersectionWith unterschiedliche Anzahl von Typvariablen?
- Definieren Sie einen Typ

```
Ord-Instanz, die keine totale Ordnung definiert.

Zeigen Sie durch Beispiele, daß dann M.Map T v nicht funktioniert. Z.B.: eingefügter Schlüssel nicht in M.toList, sichtbarer Schlüssel nicht gefunden.
```

Verzögerte Auswertung (lazy evaluation)

Motivation: Datenströme

Folge von Daten:

- erzeugen (producer)
- transformieren
- verarbeiten (consumer)

aus softwaretechnischen Gründen diese drei Aspekte im Programmtext trennen,

aus Effizienzgründen in der Ausführung verschränken (bedarfsgesteuerte Transformation/Erzeugung)

Bedarfs-Auswertung, Beispiele

Unix: Prozesskopplung durch Pipes

```
cat foo.text | tr ' ' \n' | wc -1
```

Betriebssystem (Scheduler) simuliert Nebenläufigkeit

OO: Iterator-Muster

```
Enumerable.Range(0,10).Select(n=>n*n).Sum()
```

ersetze Daten durch Unterprogr., die Daten produzieren

FP: lazy evaluation (verzögerte Auswertung)

```
from n = n: from (n+1) sum $ take 10 $ map ( \ n \rightarrow n * n ) $ from 0
```

Realisierung: Termersetzung ⇒ Graphersetzung,

Beispiel Bedarfsauswertung

```
data Stream a = Cons a (Stream a)
nats :: Stream Nat ; nf :: Nat -> Stream Nat
nats = nf 0 ; nf n = Cons n (nf (n+1))
head (Cons x xs) = x ; tail (Cons x xs) = xs
Obwohl nats unendlich ist, kann Wert von
head (tail (tail nats)) bestimmt werden:
   = head (tail (tail (nf 0)))
   = head (tail (tail (Cons 0 (nf 1)))
   = head (tail (nf 1))
   = head (tail (Cons 1 (nf 2)))
   = head (nf 2) = head (Cons 2 (nf 3)) = 2
```

es wird immer ein *äußerer* Redex reduziert

(Bsp: nf 3 ist ein innerer Redex)

Strictness

zu jedem Typ T betrachte $T_{\perp} = \{\bot\} \cup T$ dabei ist \bot ein "Nicht-Resultat vom Typ T"

- Exception undefined :: T
- oder Nicht-Termination let {f x=f (f x)} in f 0

Def.: Funktion f heißt *strikt*, wenn $f(\bot) = \bot$.

Fkt. f mit n Arg. heißt strikt in i,

falls
$$\forall x_1 \dots x_n : (x_i = \bot) \Rightarrow f(x_1, \dots, x_n) = \bot$$

verzögerte Auswertung eines Arguments

- ⇒ Funktion ist dort nicht strikt
- einfachste Beispiele in Haskell:
- Konstruktoren (Cons,...) sind nicht strikt,
- Destruktoren (head, tail,...) sind strikt.

Beispiele Striktheit

• length :: [a] -> Int ist strikt:

```
length undefined ==> (exception)
```

• (:) :: a->[a]->[a] ist nicht strikt im 1. Argument:

```
length (undefined : [2,3]) ==> 3
```

d.h. (undefined : [2,3]) ist nicht \bot

• (&&) ist strikt im 1. Arg, nicht strikt im 2. Arg.

```
undefined && True ==> (exception)
False && undefined ==> False
```

Implementierung der verzögerten Auswertung Begriffe:

- nicht strikt: nicht zu früh auswerten
- verzögert (*lazy*): höchstens einmal auswerten (ist Spezialfall von *nicht strikt*)

bei jedem Konstruktor- und Funktionsaufruf:

- kehrt *sofort* zurück
- Resultat ist thunk (Paar von Funktion und Argument)
- thunk wird erst bei Bedarf ausgewertet
- Bedarf entsteht durch Pattern Matching
- nach Auswertung: thunk durch Resultat überschreiben (das ist der Graph-Ersetzungs-Schritt)
- bei weiterem Bedarf: wird Resultat nachgenutzt

Bedarfsauswertung in Scala

hier sehen wir, wann die Auswertung stattfindet, weil sie eine Nebenwirkung hat (die Ausgabe).

- in Haskell gibt es keine Nebenwirkungen, man kann lazy evaluation nur indirekt feststellen
 - (non)strictness (keine Exception)
 - Ressourcenverbrauch (Speicher, Zeit) (ghci: :set +s)

Diskussion

John Hughes: Why Functional Programming Matters,
 1984 http://www.cse.chalmers.se/~rjmh/
 Papers/whyfp.html

Bob Harper 2011

```
http://existentialtype.wordpress.com/2011/04/24/the-real-point-of-laziness/
```

Lennart Augustsson 2011

```
http://augustss.blogspot.de/2011/05/more-points-for-lazy-evaluation-in.html
```

Anwendg. Lazy Eval.: Ablaufsteuerung

Nicht-Beispiel (JS hat strikte Auswertung)

```
function wenn (b,x,y) { return b ? x : y; } function f(x) {return wenn(x <= 0,1,x*f(x-1));} f(3)
```

• in Haskell geht das (direkt in ghci)

```
let wenn b x y = if b then x else y
let f x = wenn (x<= 0) 1 (x * f (x-1))
f 3
```

in JS simulieren (wie sieht dann f aus?)

```
function wenn (b,x,y) { return b ? x() : y(); }
```

anstatt Wert: eine Funktion mit Argument (), die den Wert ausrechnet—aber dann *jedesmal*, ist nicht-strikt, nicht lazy (dazu müßte der Wert gespeichert werden)

Anwendg. Lazy Eval.: Modularität

```
foldr:: (e -> r -> r) -> r -> [e] -> r
or = foldr (||) False
or [ False, True, undefined ]
and = not . or . map not
```

- (vgl. Augustson 2011) strikte Rekursionsmuster könnte man kaum sinnvoll benutzen (zusammensetzen)
- übliche Tricks zur nicht-strikten Auswertung zur Ablaufsteuerung
 - eingebaute Syntax (if-then-else)
 - benutzerdefinierte Syntax (macros)
 gehen hier nicht wg. Rekursion

Anwendg. Lazy Eval.: Streams

unendliche Datenstrukturen

Modell:

```
data Stream e = Cons e (Stream e)
```

man benutzt meist den eingebauten Typ

```
data [a] = [] | a : [a]
```

 alle anderen Anwendungen des Typs [a] sind falsch (z.B. als Arrays, Strings, endliche Mengen)

```
mehr dazu: https://www.imn.htwk-leipzig.de/
~waldmann/etc/untutorial/list-or-not-list/
```

Primzahlen

```
primes :: [ Nat ]
primes = sieve (from 2)
from :: Nat -> [ Nat ]
from n = n : from (n+1)
sieve :: [ Nat ] -> [ Nat ]
sieve (x : ys) =
  x : sieve (filter (\y -> 0 < mod y x) ys)
(Das ist (sinngemäß) das Code-Beispiel auf
https://www.haskell.org/)
```

Semantik von 1et-Bindungen

• der Teilausdruck undefined wird nicht ausgewertet:

```
let { x = undefined ; y = () } in y
```

alle Namen sind nach jedem = sichtbar:

```
let \{ x = y ; y = () \} in x
```

links von = kann beliebiges Muster stehen

```
let { (x, y) = (3, 4) } in x let { (x, y) = (y, 5) } in x
```

es muß aber passen, sonst

```
let { Just x = Nothing } in x
```

Beispiel für Lazy Semantik in Let

Modell: binäre Bäume wie üblich, mit fold dazu
 data T k = L | B (T k) k (T k)

 Aufgabe 1: jeder Schlüssel soll durch Summe aller Schlüssel ersetzt werden.

Aufgabe 2: dasselbe mit nur einem fold. Hinweis:

```
f t = let \{ (s, r) = fold _ _ t \} in r
```

Übungsaufgaben zu Striktheit

Beispiel 1: untersuche Striktheit der Funktion

```
f:: Bool \rightarrow Bool \rightarrow Bool
f x y = case y of { False \rightarrow x ; True \rightarrow y
```

Antwort:

- f ist nicht strikt im 1. Argument,
 denn f undefined True = True
- f ist strikt im 2. Argument,
 denn dieses Argument (y) ist die Diskriminante der obersten Fallunterscheidung.
- Beispiel 2: untersuche Striktheit der Funktion

```
g:: Bool -> Bool -> Bool
g x y z =
  case (case y of False -> x; True -> z) c
  False -> x
  True -> False
```

Antwort (teilweise)

ist strikt im 2. Argument, denn die Diskriminante
 (case y of ..) der obersten Fallunterscheidung
 verlangt eine Auswertung der inneren Diskriminante y.

Hausaufgaben

für SS21: Aufgaben 1 bis 3 auf jeden Fall, und eine von 4 und 5

Aufgabe: strikt in welchen Argumenten?

```
f x y z = case y || x of
False -> y
True -> case z && y of
False -> z
True -> False
```

Bereiten Sie (wenigstens) eine ähnliche Aufgabe vor, die Sie in der Übung den anderen Teilnehmern stellen.

2. Bestimmen Sie jeweils die ersten Elemente dieser Folgen

(1. auf Papier durch Umformen, 2. mit ghci).

Vorher für die Hilfsfunktionen (map, zipWith, concat):

1. Typ feststellen, 2. Testfälle für endliche Listen

```
(a) f = 0 : 1 : f
(b) n = 0 : map (\ x -> 1 + x) n
(c) xs = 1 : map (\ x -> 2 * x) xs
(d) ys = False
    : tail (concat (map (\y -> [y, not y]) ys)
(e) zs = 0 : 1 : zipWith (+) zs (tail zs)
siehe auch https://www.imn.htwk-leipzig.de/
```

3. Für Peano-Zahlen und Eigenbau-Listen implementieren:

len :: List a -> N als fold, Vergleich (gt: greater

~waldmann/etc/stream/

than, größer als) mit Rekursion:

```
gt :: N -> N -> Bool

gt Z y = _

gt (S x) Z = _

gt (S x) (S y) = gt _ _
```

und diese Auswertung erklären:

```
gt (len (Cons () (Cons () undefined))) (len (Cons () Nil))
```

Unterschiede erklären zu

```
length ((): (): undefined) > length ((): undefined)
```

4. Folie Ablaufsteuerung: Ifthenelse als Funktion in Haskell, in Javascript, Simulation der nicht-strikten Auswertung.

5. Algorithmus aus Appendix A aus Chris Okasaki: Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design (ICFP 2000) implementieren (von where auf let umschreiben), testen und erklären

Verbrauch von Datenströmen: Fold

Wiederholung, Motivation

```
• data List a = Nil | Cons a (List a)
fold :: res -> (a -> res) -> List a -> res
fold nil cons Nil = nil
fold nil cons (Cons x xs)=cons x (fold nil cons xs)
```

mit nicht striktem Argument. Bsp: (||) in

```
fold False (||) (Cons True (Cons False undefined))
```

gut: verkürzte Auswertung

mit striktem Argument, Bsp: (+) in

```
fold (0::Natural) (+) (Cons 1 (Cons 2 Nil))
```

schlecht: erst werden alle Thunks gebaut

Fold über Listen: von rechts, von links

- für den Stream-Datentyp [a] = List a aus der Standardbibliothek
- unser fold heißt foldr, "r" wegen "von rechts", (Eselsbrücke: "richtig"), aber die Argument-Reihenfolge ist falsch (ist *nicht* die Konstruktor-Reihenfolge) foldr $f s [x_1, x_2, x_3] = f x_1 (f x_2 (f x_3 s))$

```
foldr f s [x_1, x_2, x_3] = f x_1 (f x_2 (f x_3 s))
foldr f s [x_1, \dots, x_n] = f x_1 (foldr <math>f s [x_2, \dots, x_n])
```

• ein anderes Rekursionmuster ist foldl (von links)

```
foldl f s [x_1, x_2, x_3] = f(f(f s x_1) x_2) x_3) foldl f s [x_1, \ldots, x_n] = f (foldl f s [x_1, \ldots, x_{n-1}]) x_n speziell für Streams, nicht (wie fold) allgemein für Bäume
```

• Anwend: bestimme f, s mit reverse = foldl f s

Fold-Left: Beispiel

- fold $f s [x_1, ..., x_n] = f$ (fold $f s [x_1, ..., x_{n-1}]) x_n$
- Aufgabe: bestimme f, s mit reverse = foldl f s
- Herleitung der Lösung durch Beispiel

• Lösung: reverse = foldl (flip (:)) []

Fold-Left: Implementierung

• Eigenschaft (vorige Folie) sollte nicht als Implementierung benutzt werden, denn $[x_1, \ldots, x_{n-1}]$ ist teuer (erfordert Kopie)

zum Vergleich

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f s xs = case xs of
   [] -> s
   x : xs' -> f x (foldr f s xs')
```

Fold-Left: allgemeiner Typ

• der Typ von Prelude.foldl ist tatsächlich

```
Foldable t => (b->a->b) -> b -> t a -> b
```

 hierbei ist Foldable eine (Typ)Konstruktor-Klasse mit der einzigen (konzeptuell) wesentlichen Methode

```
class Foldable t where toList :: t a -> [a]
```

und Instanzen für viele generische Container-Typen

• weitere Methoden aus Effizienzgründen

- Typeset by FoilT_EX -

Das strikte Fold-Left: Anwendung

 Motivation war: effizientes fold über eine strikte Funktion (ohne Konstruktion von Thunks), aber:

```
:set +s
foldl (+) (0::Int) [0 .. 10^6]
500000500000 -- (0.38 secs)
foldl (+) (0::Int) [0 .. 10^7]
50000005000000 -- (2.18 secs)
```

die richtige Funktion dafür ist:

```
import qualified Data.Foldable as F
F.foldl' (+) (0::Int) [0 .. 10^7]
50000005000000 -- (0.36 secs)
```

• ghc -02: erzeugt Maschinencode, der nicht allokiert

```
ghc -02 -rtsopts f.hs; ./f +RTS -M16k -A8k -s
```

Fold-Left mit nicht-striktem Argument

• foldl f s kann die verkürzte Auswertung (Funktion f ist nicht strikt im zweiten Argument) nicht ausnutzen:

```
foldl (||) False (replicate (10^7) True)
True -- (1.95 secs, 1,292,364,088 bytes)
```

F.fold' auch nicht (braucht aber weniger Platz)

```
F.foldl' (||) False (replicate (10^7) True)
True -- (0.15 secs, 560,063,800 bytes)
```

• foldr kann es (Resultat steht sofort fest)

```
foldr (||) False (replicate (10^7) True)
True -- (0.00 secs, 63,968 bytes)
```

• um passende Variante auszuwählen: Striktheit feststellen Alternative: fold vermeiden, Rekursion jedesmal ausprogrammieren. Dann kann man gleich C benutzen.

- Typeset by FoilT_EX -

Transformation von Datenströmen

Bsp: Linq (Language integrated query) in C#

- IEnumerable<int> stream = from c in cars
 where c.colour == Colour.Red
 select c.wheels;
- LINQ-Syntax nach Schlüsselwort from (das steht vorn — "SQL vom Kopf auf die Füße gestellt")
- wird vom Compiler übersetzt in

```
IEnumerable<int> stream = cars
.Where (c => c.colour == Colour.Red)
.Select (c => c.wheels);
```

• auf Deutsch: map wheels (filter isRed cars) Funktionen 2. Ordnung: Select = map, Where = filter.

Kombination von Strömen mit SelectMany

- from x in Enumerable.Range(0,10)
 from y in Enumerable.Range(0,x)
 select y*y
- wird vom Compiler übersetzt in

```
Enumerable.Range(0,10)
.SelectMany(x=>Enumerable.Range(0,x))
.Select(y=>y*y)
```

- aus diesem Grund ist SelectMany wichtig
- das mathematische Modell ist >>= (gesprochen: bind)

```
(>>=) :: [a] -> (a -> [b]) -> [b] xs >>= f = concat (map f xs)
```

Anwendung von Bind

```
(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)
[1 .. 10] >>= \ x ->
[x .. 10] >>= \ y ->
[y .. 10] >>= \ z ->
quard (x^2 + y^2 == z^2) >>= \ ->
```

return (x, y, z)

mit diesen Hilfsfunktionen

```
guard :: Bool -> [()]
guard b = case b of False->[]; True->[()]
return :: a -> [a]; return x = [x]
```

do-Notation

```
• [1 .. 10] >>= \ x ->
        [x .. 10] >>= \ y ->
        [y .. 10] >>= \ z ->
        guard (x^2 + y^2 == z^2) >>= \ _ ->
        return (x,y,z)
```

- do x <- [1 .. 10]
 y <- [x .. 10]
 z <- [y .. 10]
 guard \$ x^2 + y^2 == z^2
 return (x,y,z)</pre>
- https://www.haskell.org/onlinereport/ haskell2010/haskellch3.html#x8-470003.14

Wdhlg: der Typkonstruktor Maybe

- data Maybe a = Nothing | Just a
- modelliert Rechnungen, die fehlschlagen können

```
case ( evaluate l ) of
  Nothing -> Nothing
  Just a -> case ( evaluate r ) of
    Nothing -> Nothing
  Just b -> if b == 0 then Nothing
    else Just ( div a b )
```

• äquivalent (mit passendem (>>=), return, empty)

```
evaluate l >>= \ a ->
  evaluate r >>= \ b ->
  if b == 0 then empty else return (div a b)
```

Gemeinsamkeit mit (>>=), return auf Listen!

Die Konstruktorklasse Monad

```
    class Monad c where -- Typisierung
    return :: a -> c a
    ( >>= ) :: c a -> (a -> c b) -> c b
```

- instance Monad [] where -- Implementierung
 return = \ x -> [x]
 m >>= f = concat (map f m)
- instance Monad Maybe where -- Implem.
 return x = Just x
 m >>= f = case m of
 Nothing -> Nothing; Just x -> f x

Axiome für Monaden

• class Monad c enthält diese Methoden:

```
return :: a -> c a,
(>>=) :: c a -> (a -> c b) -> c b
```

- wobei (>>=) "assoziativ" sein soll
 es hat dafür aber den falschen Typ, deswegen betrachtet
 man f >=> q = \ x -> f x >>= q
- dafür soll gelten
 - return ist links und rechts neutral:

```
(return >=> f) = f = (f >=> return)
```

- (>=>) ist assoziativ:

$$(f >=> (g >=> h)) = ((f >=> g) >=> h)$$

Maybe als Monade

- Ü: die Monaden-Axiome (für >=> für Maybe) testen (Leancheck), beweisen.
- do-Notation

```
do a <- evaluate l
  b <- evaluate r
  if b == 0 then empty else return (div a b)</pre>
```

- Maybe a \approx Listen ([a]) mit Länge $\in \{0, 1\}$
- Ü: definiert das folgende auch eine Monade für []?

```
xs >>= f = take 2 (concat (map f xs))
```

IO: die Schnittstelle zum Betriebssystem

- Ziel: Beschreibung von Interaktionen mit der Außenwelt (Zugriffe auf Hardware, mittels des Betriebssystems)
- a :: IO r bedeutet: a ist Aktion mit Resultat :: r
- readFile :: FilePath -> IO Text
 putStrLn :: Text -> IO ()
 main :: IO ()
 main = T.readFile "foo.bar" >>= \s -> T.putStrLn s
- Verkettung von Aktionen durch >>=
- alterative Oberflächen-Syntax:

```
main = do {s <- T.readFile "foo.bar"; T.putStrLn s}</pre>
```

- ein Haskell-Hauptprogramm definiert einen Namen
 main :: IO (), dessen Aktion wird ausgeführt
- das Typsystem trennt streng zw. Aktion und Resultat
 Bsp: f:: Int -> Int benutzt OS garantiert nicht

Maybe in C# (Nullable)

- data Maybe a = Nothing | Just a
- C#: Typkonstruktor Nullable<T>, abgekürzt T?
 Argument muß Wert-Typ sein (primitiv oder struct)
- Verweistypen sind automatisch Nullable (das ist der billion dollar mistake, Tony Hoare 1965)

```
https://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoa
```

Methoden:

```
Nullable<int> x = null; x.HasValue
int? y = 7; y.HasValue; y.Value
```

- überladene Typen einiger Operatoren int? a = x + y
- Operator ??, Bsp. int b = x + y ?? 8

Nullable als Monade

- wie heißen Return und Bind?
 - Return: Konstruktor new Nullable<int>(9)
 - Bind: realisiert durch Operator ? .
- Anwendung (Testfall)

```
class C {
  readonly int x; public C(int x) {this.x=x;}
  public C f() {return this.x>0 ? new C(x-1) : null;
}

new C(1) .f() .f()
new C(1)?.f()?.f()
```

Übungen zu Monaden

 (wurde in der VL vorgeführt) Testen der Monaden-Axiome für Maybe in ghci:

```
import Test.LeanCheck
import Test.LeanCheck.Function

f >=> g = \ x -> f x >>= g

check $ \ f x ->
   ((f :: Bool -> Maybe Int) >=> return) x
```

beachten Sie

• Testdatenerzeugung für Funktionen (hier: f) erfordert

import Test.LeanCheck.Function

- Typ-Annotation ist notwendig, um Belegung aller Typvariablen zu fixieren
- Vergleich von Funktionen ist nicht möglich (es gibt keine instance Eq (a -> b)), deswegen zusätzliches Argument x und Vergleich der Funktionswerte (alternativ: https://hackage.haskell.org/package/leancheck-0.9.1/docs/Test-LeanCheck-Function-Eq.html)

Hausaufgaben

SS 21: Aufgaben 1, 2, 4, 5.

1. In einem Kommentar in GHC.List https:

```
//hackage.haskell.org/package/base-4.15.0.
0/docs/src/GHC-List.html#filter stellt SLPJ
(wer ist das?) fest, daß man in der Gleichung
```

die zur Programmtransformation während der Kompilation verwendet wird, rechts nicht p x & q x schreiben darf.

Warum—die Konjunktion ist doch kommutativ? Hinweis: auf Bool ja, auf Bool nicht.

- 2. (Funktionen aus Data.List)
 - implementieren Sie scanr mittels foldr.

```
scanr f z = foldr (\x (y:ys) -> _) _
```

• implementieren Sie scanr mittels mapAccumR.

```
scanr f z = uncurry (:) . mapAccumR _ _
```

ergänzen Sie die allgemeingültige Aussage

```
scanr f z (reverse xs) = _ (scanl _ xs)
```

- 3. für instance Monad Maybe: zeigen Sie, daß (>=>) nicht kommutativ ist.
 - Geben Sie einen statisch korrekten Testfall an, für den der kommutierte (vertauschte) Ausdruck statisch falsch (typfehlerhaft) ist.

Geben Sie Testfälle an, bei denen die Kommutation statisch korrekt ist, aber die dynamische Semantik (die

berechneten Werte) nicht übereinstimmen.

Verwenden Sie dafür Leancheck.

zur Listen-Monade:

Erfüllt die folgende Instanz die Monaden-Axiome?

```
return x = [x]

xs >>= f = take 2 (concat (map f xs))
```

Hinweis: import Prelude hiding ((>>=)), dann
(>>=) wie hier. return wird unverändert importiert.

Definieren Sie den Operator

```
f >=> g = \ xs -> f xs >>= g, testen Sie die Axiome mittels Leancheck.
```

- 5. Maybe in C# und Java:
 - Nullable<T> in C# lst ?? tatsächlich assoziativ?

Vergleichen Sie die Bedeutung von (a ?? b) ?? c und a ?? (b ?? c) unter diesen Aspekten:

- statische Semantik: Typisierung
- dynamische Semantik: einschließlich ⊥ (Exceptions)
- Optional<T> in Java:
 - welche Methoden realisieren bind und return?
 - was entspricht dem Operator ?? aus C#?
- Primär-Quellen (Dokumentation) angeben, Rechnungen in csharp (mono) bzw. jshell (jdk) vorführen.
- 6. (mglw. autotool—CYP) beweisen Sie diese Beziehung zwischen foldl und foldr

```
foldl :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldl f z0 xs =
let f' x k z = k (f z x)
```

```
in foldr f' id xs z0
```

- 7. (später) definieren Sie eine Monad-Instanz jeweils für
 - binäre Bäume mit Schlüsseln nur in den Blättern
 - ... nur in den Verzweigungsknoten
 - ...in allen Knoten
 - beliebig verzweigende Bäume rose trees

```
data Tree a = Node a [Tree a]
```

überprüfen Sie ein Einhaltung der Axiome.

- Typeset by FoilT_EX -

Unveränderliche Daten

Überblick

- alle Attribute aller Objekte sind unveränderlich (final)
- anstatt Objekt zu ändern, konstruiert man ein neues
- vereinfacht Formulierung und Beweis von Programm-Eigenschaften (wenn der Konstruktor korrekt ist, ist alles korrekt)
- parallelisierbar (keine updates, keine data races)

```
http://fpcomplete.com/
the-downfall-of-imperative-programming/
```

- Persistenz (Verfügbarkeit früherer Versionen)
- Belastung des Garbage Collectors (...dafür ist er da)

- Typeset by FoilT_EX -

Beispiel: Einfügen in Baum

destruktiv (Java)

```
interface Tree<K> { void insert (K key); }
Tree<String> t = ...;
t.insert ("foo");
```

persistent (Java):

```
interface Tree<K> { Tree<K> insert (K key);
Tree<String> t = ...;
Tree<String> u = t.insert ("foo");
```

persistent (Haskell):

```
insert :: k -> Tree k -> Tree k
```

Beispiel: unbalancierter Suchbaum

- data Tree k = -- Datentyp
 Leaf | Branch (Tree k) k (Tree k)
- Invariante: $\forall t \in Tree \ k$. monotone (inorder t)
- insert :: Ord k => k -> Tree k -> Tree k
 insert x t = case t of
 Leaf -> Branch Leaf x Leaf
 Branch l k r -> case compare x k of ...
- wie teuer ist die Persistenz?

(wieviele neue Objekte entstehen bei insert, delete?)

Typeset by FoilT_EX –

Löschen in unbalancierten Suchbäumen

 um die Wurzel eines (Teil)baumes t zu löschen: der inorder-Nachfolger wird aus rechtem Kind extrahiert und wird neue Wurzel

```
• delete :: Ord k => k -> Tree k -> Tree k
  delete x t = case t of
  Leaf -> Leaf
  Branch l k r -> case compare x k of
  LT -> _ ; GT -> _ ;
  EQ -> case minView r of
  Nothing -> _
  Just (m, r') -> _
```

minView :: Ord k => Tree k -> Maybe (k, Tree k)

Größen-balancierter Suchbaum

- |t|: Anzahl der Blätter, H(t): Höhe
- Invariante: Suchbaum und α -Balance (Bsp: $\alpha = 1/4$)

```
\forall t = Branch 1 k r: \alpha |t| \leq |l| \leq (1 - \alpha)|t|
```

- für jeden α -balancierten Baum t gilt: $H(t) \leq \log_{1/(1-\alpha)} |t|$. Bsp: $\alpha = 1/4, |t| = 10^9$
- Guy Blelloch et al.: *Just Join for Parallel Sets*, 2016 https://arxiv.org/abs/1602.02120v3

Implementierung von insert, delete, union, intersection durch *smart constructor* für bereits separierte Argumente

branch :: Ord k => Tree k -> k -> Tree k -> Tree k

Persistente Objekte in Git

- Distributed development (Linus Torvalds 2005)
- Strong support for non-linear development.
 (Branching and merging are fast and easy.)
- Efficient handling of large projects.
 (z. B. Linux-Kernel, https://kernel.org/)
- Cryptographic authentication of history.
 (d.h., block chain; die Idee ist überhaupt nicht neu)
- nicht verwechseln: Git (File-Format, Client) mit
 - Git[hu/la]b (Web-Gui für zentrales Repo und Issues),
 - Git[hu/la]b.Com (Vermietung von Speicher und Server, Anhäufung und Auswertung von Benutzerdaten)

– Typeset by FoilT_EX – 246

Objekt-Versionierung in Git

- Objekt-Typen:
 - Datei (blob),
 - Verzeichnis (tree), mit Verweisen auf blobs und trees
 - Commit, mit Verweisen auf tree u. commits (Vorgänger) git cat-file -p <hash>
- Objekte sind unveränderlich und durch SHA1-Hash (160 bit = 40 Hex-Zeichen) identifiziert
- statt Überschreiben: neue Objekte anlegen
- jeder Zustand ist durch Commit-Hash (weltweit) eindeutig beschrieben und kann (aus Repo) rekonstruiert werden
- deswegen Vorsicht, niemals Geheimnisse im Repo
- Zeitreisen mit git bisect

- Typeset by FoilT_EX -

Theorems for Free: Beispiel

- welche F.n haben Typ f :: forall a . a \rightarrow a? nur eine: f = $\xspace x \rightarrow x$.
- welche F.n haben Typ g :: forall a . a -> [a] ?
 viele...aber für jedes solche gilt:
 für jedes h :: a -> b, x :: a
 gilt g (h x) = map h (g x)
- diese Eigenschaft folgt allein aus dem Typ von g
 d.h., ist unabhängig von Implementierung von g
- gilt nicht für Programme in imperative Sprachen mit veränderlichen Daten wir haben schon Eigensch. fktl. Programme bewiesen Besonderheit jetzt: Beweis ohne Ansehen der Implement.

– Typeset by FoilT_EX −

Theorems for Free: Quelle

Phil Wadler: Theorems for Free, FCPA 1989

```
https://homepages.inf.ed.ac.uk/wadler/
topics/parametricity.html
```

From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus.

John C. Reynolds (1935–2013)

```
https://www.cs.cmu.edu/~jcr/
```

(Lesetipp: Some Thoughts on Teaching Programming and Programming Languages, PLC 2008)

- Typeset by FoilT_EX - 249

Struktur-erhaltende Transformationen

• (Wdhlg) strukturerhaltende Stream-Transformation:

```
map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
```

Verallgemeinerung: strukturerhaltende Transformation:

```
class Functor c where fmap :: (a -> b) -> c a -> c b
```

• gewünschte Eigenschaften (Axiome):

```
fmap id = id; fmap (f.g) = fmap f . fmap g
```

- Standardbibl.: Instanzen für: [], Maybe,
- für jeden algebraischen Datentyp kann fmap durch fold implementiert werden, Bsp (List):

```
fmap f = fold Nil (\x y -> Cons (f x) y)
```

Theorems for Free: Systematik, Beispiele

• für jede Funktion $g:: \forall a.C_1 a \to \dots C_n a \to Ca$ (C_i, C sind einstellige Typkonstruktoren mit Functor-Instanzen) gilt

```
g(\operatorname{fmap}_{C_1} h x_1) \dots (\operatorname{fmap}_{C_n} h x_n) = \operatorname{fmap}_C h (g x_1 \dots x_n)
```

maybeToList :: Maybe a -> [a]
maybeToList (fmap h x) = fmap h (maybeToList x)

```
length :: [a] -> Nat
length (fmap h xs) = length xs
```

• wie lauten die "Umsonst-Sätze" für

```
- (:) :: a -> [a] -> [a]
```

- take :: Int -> [a] -> [a]

Freie Theoreme für Funktions-Typen

• **Bsp**: filter :: (a->Bool) -> [a] -> [a]

- filter (>30) (fmap (*10) [1,5,2,4,3])
 = filter (>30) [10,50,20,40,30] = [50, 40]
 = fmap (*10) [5,4]
 = fmap (*10) (filter ((>30).(*10)) [1,5,2,4,3])
- (filter p (fmap f xs)) = fmap f (filter (p . f) xs)
- für Typ $t = (i_1 \rightarrow \cdots \rightarrow i_n \rightarrow o)$:

Polarität; P(o) = P(t), $P(i_1) = \cdots = P(i_n) = \neg P(t)$

für P(t) positiv: transformiere rechts, negativ: links

Hausaufgaben

SS21: Aufgaben 1, 2, 4, 5.

- 1. für α -balancierte Suchbäume
 - Geben Sie einen 1/4-balancierten Baum mit (z.B.) 10 Schlüsseln an, der möglichst hoch ist. In jedem Branch 1 k r soll $|l| \le |r|$ gelten. Vergleichen Sie die Höhe mit der in der VL berechneten Schranke.
 - Vergleichen Sie die Implementierung von split und (z.B.) union (Fig. 1 des zitierten Papers) mit der Implementierung der entsprechenden Funktion aus https://hackage.haskell.org/package/ containers-0.6.4.1/docs/Data-Set.html
 - für Data. Set: erläutern Sie Laufzeit-Unterschiede

zwischen fromList und fromAscList

2. Für *rose trees* (Rhododendron)

```
data Tree k = Node k [Tree k]
```

Implementieren Sie das Rekursionsschema

```
fold:: (k -> [res] -> res) -> Tree k -> (dieser Typ war ursprünglich fehlerhaft angegeben, wurde repariert Mon 28 Jun 2021 11:46:24 CEST)
```

- Bestimmen Sie mit diesem fold die Anzahl der Knoten, die Höhe, die Summe der Schlüssel.
- Konstruieren Sie Binomialbäume: B_n hat Schlüssel n und Kinder $[B_0, \ldots, B_{n-1}]$ insbesondere: B_0 hat Schlüssel 0 und keine Kinder.
- berechnen Sie die o.g. Parameter für kleine B_n , geben

Sie allgmeine Aussagen (für alle B_n an), beweisen Sie diese.

- git bisect erläutern und vorführen. Dazu ein überschaubares kleines Projekt verwenden (oder anlegen) (ca. 10 commits) mit einfachem Testfall sowie einem einfachen Fehler irgendwo.
 - In diesem Zusammenhang Verhaltensregeln/Empfehlungen diskutieren (master always buildable, squash commits?)
- 4. instance Functor Tree
 - implementieren Sie die Functor-Instanz für binäre Bäume mit Schlüsseln in inneren Knoten (1. mit Rekursion, 2. mit fold)

- überprüfen Sie die Axiome für fmap
 Benutzen Sie Aufzählung von Funktionen in Leancheck
- geben Sie das freie Theorem für den Typ
 - 1. Tree k -> [k], 2. Tree k -> Nat an und überprüfen Sie an Beispielen
- 5. Freie Theoreme gibt es nur für uneingeschränkt polymorphe Typen. Für Typen mit Constraints

Bsp. Data.List.sort :: Ord $k \Rightarrow [k] \rightarrow [k]$

betrachtet man stattdessen die Funktion, bei der das Typconstraint durch das Wörterbuch-Argument (hier: mit der einzigen Funktion compare) ersetzt wird.

Für dieses Beispiel ist das Data.List.sortBy. Geben Sie für deren Typ das freie Theorem an, überprüfen Sie.

(nächste Teilaufgabe hat nichts mit freien Theoremen zu tun. Beachten Sie: wer außerhalb einer Übungsaufgabe sortiert, macht einen Fehler, hätte stattdessen Data.Set benutzen sollen. Wer einfach verkettete Listen benutzt, auch (⇒ Data.Sequence, Data.Vector). Wer Strings benutzt, auch (⇒ Data.Text))

Wenn man bezüglich einer bestimmten Maßfunktion sortieren möchte, z.B. Strings nach der Länge, dann kann man verwenden

```
import Data.Function (on)
sortBy (compare 'on' length) ["fooo", "bar"
```

aber auch

```
sortOn length ["fooo", "bar", ""]
```

Erklären Sie 'on'. Erklären Sie den Unterschied (Laufzeit, Platz) zwischen beiden Varianten.

- Typeset by Foil $T_E X -$

Zusammenfassung, Ausblick

– Typeset by Foil $T_E X$ –

Zusammenfassung, Ausblick

Prüfungen

- in SS 21 als PH-D (Hausarbeit digital): Bearbeitung von Aufgaben in autotool,
- Bewertung im Prüfungsmodus:
 - teilw. versteckte Antworten (Bewertung wird erst nach Prüfungsende sichtbar)
 - teilw. Beschränkung der Anzahl der Einsendungen
 - mglw. Abwertung bei mehreren Einsendungen (Syntax-Fehler: 1 %, Semantik-Fehler: 10 %)
- **Technik**: https://gitlab.imn.htwk-leipzig.de/autotool/all0/-/tree/master/doc/pm

Hausaufgaben für Übung KW 27

- bereits festgelegte Aufgaben
 - 25 A 3 (git)
 - 25 A 5 (sortBy, sortOn)
- noch ausstehende Aufgaben (wahlweise)
 - 24 A 3 (Eigensch. von >=> für instance Monad Maybe)
 - 23 A 4 (Simulation der nicht strikten Auswertung in JS)
- Zusatz (auch später)
 - Big Endian Patricia Trees (https://hackage.haskell.org/package/ containers-0.6.5.1/docs/Data-IntSet.html) Datenstruktur (kurz!) erklären; diesen Fehler vorführen,

```
erklären (und reparieren) https://github.com/
haskell/containers/issues/783
$ cabal repl --constraint 'containers == 0.6.2.1'
> Data.IntSet.fromList [255,256]
     > Data.IntSet.singleton 254
True
$ cabal repl --constraint 'containers == 0.6.4.1'
> Data.IntSet.fromList [255,256]
     > Data.IntSet.singleton 254
False
Implementierung von
```

instance Ord IntSet where compare s1 s2 =
* Version 0.6.3.1 und 0.6.4.1: case relate ...

* Version davor und danach:

compare (toAscList s1) (toAscList s2)

Erläuterung/Wiederholung: Currying

- ist die Darstellung
 - einer zweistelligen Funktion $f \in (A \times B) \to C$ als einstellige Funktion (2. Ord.) $g \in A \to (B \to C)$ Darstellungen sind äquivalent wg. f(x,y) = g(x)(y)
- benannt nach Haskell B. Curry (1900-1982)
 https://mathshistory.st-andrews.ac.uk/
 Biographies/Curry/
- Lambda-Kalkül und Haskell: jede Funktion ist einstellig, mit Abkürzungen ($g = \lambda xy.M, g :: A \to B \to C$)

Erläuterung/Wiederholung: Extensionalität

- zwei Funktionen sind (semantisch) gleich, wenn sie für gleiche Argumente gleiche Werte berechnen
- als Beweisprinzip in Cyp:

```
map :: (a -> b) -> List a -> List b
id :: a -> a ; id x = x
Lemma: map id .=. id
Proof by extensionality with xs :: List a
Show : map id xs .=. id xs
Proof by induction on xs :: List a ...
```

- Anwendung: $(\lambda x.fx) = f$, denn $(\lambda x.fx)y \rightarrow_{\beta} fy$
- Anwendung (zweimal)

```
plus x y = fold x (\ a -> S a) y
plus x = fold x S
```

Wiederholung/Bsp: generische Polymorphie

Anwendung des Punkt-Operators:

```
succ 7 = > 8 (succ . succ) 7 ==> 9
```

der Typ von (.) ist generisch polymorph

```
(.) :: forall a b c . (b->c) -> (a->b) -> a -> c
```

• aus dem Typ kann man eine Implementierung ableiten

```
f(x :: b \rightarrow c) (y :: a \rightarrow b) (z :: a) = _ :: c
```

es gibt im wesentlichen nur diese eine (man könnte sinnlose id einfügen, mit id = $\lambda x.x$)

vgl. auch: aus einem Typ das freie Theorem ableiten

- Typeset by FoilT $_{\!E}\!X$ -

Zusammenfassung: Themen

- Terme, algebraische Datentypen
- Muster, Regeln, Term-Ersetzung (Progr. 1. Ordnung)
- Beweisverf.: Umformung, Fallunterscheidung, Induktion
- Polymorphie, Typvariablen, Typkonstruktoren
- Funktionen als Daten, λ -Kalkül (Progr. höherer Ord.)
- Beweisverfahren: Extensionalität
- Rekursionsmuster (fold)
- Eingeschränkte Polymorphie (Typklassen)
 Beispiele: Eq, Ord, Show, Listable (Testdatenerzeugung)
- Striktheit, Bedarfsauswertung, Streams
- Stream-Verarbeit.: foldl, map, filter, bind; freie Theoreme

Algorithmen für persistente Daten

Aussagen

- statische Typisierung ⇒
 - findet Fehler zur Entwicklungszeit (statt Laufzeit)
 - effizienter Code (keine Laufzeittypprüfungen)
- generische Polymorphie: flexibler und sicherer Code
- Funktionen als Daten, F. höherer Ordnung ⇒
 - ausdrucksstarker, modularer, flexibler Code

Programmierer(in) sollte

- die abstrakten Konzepte kennen
- sowie ihre Realisierung (oder Simulation) in konkreten Sprachen (er)kennen und anwenden.

Zur objektorientierten Programmierung

- tatsächlich meist: klassen-oriertierten Programmierung
- nützlich ist allein: die Trennung zwischen Schnittstelle (Signatur + Axiome) und Implementierung (Algebra)
- andere Eigenschaften richten seit ca. 1980 unglaublich viel Schaden an (in Praxis und in Lehre)
 - Zustandsänderungen: Code ist nicht parallelisierbar
 - Implementierungs-Vererbung: nicht modular
 - die umständliche Simulation von Funktionen als Daten (Befehls-Objekte, funktionale Interfaces)

 bessere Lösungen sind bekannt (1936: Lambda-Kalkül, 1973: generische Polymorphie), nur zögerlich verwendet

Ausdrucksstarke Typen

- das softwaretechnische Ziel statischer Typisierung ist:
 - vollständige Spezifikation = Typ
 - Implementierung erfüllt Spezifikation
 Implementierung ist statisch korrekt
 und das wird durch den Compiler überprüft
- Beispiele:
 - nicht validieren (:: String -> Bool),
 sondern parsen (:: String -> Maybe T)
 - Unterscheidung zw. Aktion (readFile "f" :: IO Text)
 und ihrem Resultat (t :: Text)

Ausdrucksstärkere Typen: Balance

- bekannt ist: generische Container-Typen (Element-Typ als Typ-Parameter): ergibt flexiblen (d.h., nachnutzbaren) und sicheren Code.
- der Typ kann auch die Form (z.B.: Balance) eines Baumes beschreiben! — Beispiel:

```
data Tree k = Single k \mid Deep (Tree (k, k))
```

Anwendung: containers:Data.Sequence

Daten-abhängige Typen (dependent types)

- Wiederholung: bisher zwei Arten von Funktionen:
 - von Datum nach Datum (z.B.: Nachfolger, Spiegelbild)
 - von Typ nach Typ (Typkonstruktor, z.B.: List, Tree)
- nützlich ist auch:
 - v. Datum nach Typ (B.: Zahl → Vektoren dieser Länge)
- {-# language DataKinds, KindSignatures, GADTs #-}
 data N = Z | S N
 data Vector (l :: N) e where
 Nil :: Vector Z e
 Cons :: e -> Vector l e -> Vector (S l) e

 Anwendung: head :: Vector (S l) e -> e ist total
- Agda (Ulf Norell 2007, Catarina Coquand 1999)
 http://wiki.portal.chalmers.se/agda