8. Übung zu Theoretische Informatik: Berechenbarkeit und Komplexität

Wintersemester 2024/25

zu lösen bis 16. Dezember 2024

Aufgabe 8.1:

Bestimmen Sie für die Funktion

- 1. $f = \operatorname{Sub}_{2}^{2}(\operatorname{Proj}_{1}^{2}, \operatorname{Sub}_{1}^{2}(\operatorname{Succ}, \operatorname{Proj}_{2}^{2}), \operatorname{Sub}_{1}^{2}(\operatorname{Succ}, \operatorname{Zero}^{2}))$ die Werte f(i, j) für $(i, j) \in \{0, \dots, 3\}^{2}$,
- 2. $f' = PR^1(Zero^0, Sub_1^2(Succ, Zero^2))$ die Werte f'(i) für $i \in \{0, \dots, 3\}$,
- 3. $f'' = PR^3(Sub_1^2(Succ, Zero^2), PR^4(Sub_1^3(Succ, Proj_1^3), Sub_1^5(Succ, Proj_5^5)))$ die Werte f(i, j, k) für $(i, j, k) \in \{0, \dots, 2\}^3$

Aufgabe 8.2:

Bestimmen Sie für $f = \mu(g)$ mit $g(x_1, x_2, y) = x_1 \div (x_2 \cdot y)$ die Werte f(12, 5) und f(3, 0).

Aufgabe 8.3:

Gegeben ist die Funktion $f = \mu \left(PR^2 \left(Zero^1, Zero^3 \right) \right)$.

- 1. Berechnen Sie f(x) für jedes $x \in \mathbb{N}$ mit $x \leq 4$.
- 2. Lässt sich die Funktion f auch durch einen rekursiven Funktionsterm ohne μ -Operator darstellen? Begründen Sie.

Aufgabe 8.4:

Beschreiben Sie die folgende Funktion durch einen partiell rekursiven Funktionsterm:

$$f: \mathbb{N} \to \mathbb{N} \text{ mit } \forall x \in \mathbb{N}: f(x) = \left\{ \begin{array}{ll} x/3 & \text{, falls } 3|x \\ \text{nicht definiert} & \text{, sonst} \end{array} \right.$$

Überprüfen Sie Ihre Lösung an wenigstens fünf sinnvollen Beispielen.

Aufgabe 8.5:

Geben Sie einen primitiv rekursiven Funktionsterm an, welcher die Funktion

$$f: \mathbb{N} \to \mathbb{N} \quad \text{mit} \quad \forall x \in \mathbb{N}: f(x) = \sum_{i=1}^{x} 2i$$

repräsentiert.

Aufgabe 8.6:

Gegeben ist die Funktion
$$f: \mathbb{N} \to \mathbb{N}$$
 mit $\forall x \in \mathbb{N}: f(x) = \max\{k \mid 2^k 3^{k+1} \leq x\}$. Gilt $f \in \text{Part}, f \in \text{Allg}, f \in \text{Prim}$?