8. Übung im Modul "Modellierung"

Wintersemester 2024/25

zu lösen bis 4. Dezember 2024

Getränk

Aufgabe 8.1

Person

Die folgenden Tabellen enthalten die Relationen L und A.

L (Lieblingsgetränke)

A (Getränke-Angebot)

Tina Cola Tina Wasser Paul Bier Anna Rotwein Wasser Anna Wasser Klaus Weißwein Klaus Anna Bier Moni Eierlikör Moni Cola

Restaurant	Getränk
Seeblick	Wasser
Seeblick	Eierlikör
Talschenke	Bier
Talschenke	Wasser
Berghof	Rotwein
Berghof	Weißwein
	1

Außerdem ist bekannt:

- Paul ist Annas Vater.
- Anna und Klaus sind Tinas Eltern.
- Moni ist die Mutter von Klaus.

Diese Aussagen definieren die Relation E(ist Elternteil von) und die Eigenschaften W(weiblich) und M (männlich).

- a. Geben Sie für die Relationen L, A, E, W, M jeweils Stelligkeit und Typ der Relation an.
- b. Geben Sie jeweils extensionale Darstellungen und umgangssprachliche Beschreibungen für die folgenden Mengen und Relationen an:
 - $L|_{\{Anna,Klaus\}}$
 - $L^{-1}|_{\{\text{Bier,Wasser}\}}$
 - $A^{-1}|_{\{\text{Bier,Wasser}\}}$
 - $\pi_1(A)$
 - $\pi_2\left(L|_{\{\mathsf{Anna},\mathsf{Klaus}\}}\right)$
 - E^{-1}
 - $\bullet \ L \circ A^{-1}$
- c. Stellen Sie die Relation ist Urenkel Von durch die Relation E dar.
- d. Stellen Sie die Relation sind Geschwister mit Hilfe der Relation E dar. (Achtung: Niemand ist Geschwister von sich selbst. Sie brauchen also eine weitere bekannte Relation.)

Aufgabe 8.2

Zeigen Sie, dass für alle binären Relationen

- a. $R \subseteq A \times B$ und $S \subseteq A \times B$ gilt $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$
- b. $R \subseteq A \times B$ und $S \subseteq B \times C$ gilt $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

Aufgabe 8.3

- a. Geben Sie eine Relation $S \subseteq \{a, b, c, d\}^2$ an, die weder symmetrisch noch asymmetrisch noch antisymmetrisch ist.
- b. Geben Sie zwei symmetrische Relationen $R \subseteq M \times M$ und $Q \subseteq M \times M$ auf der Menge $M = \{a, b, c\}$ an, deren Verkettung $R \circ Q$ nicht symmetrisch ist.

Aufgabe 8.4

Lösen Sie die folgenden Aufgaben für die binäre Relation $R \subseteq \{1,2,3,4\}^2$ mit

$$R = \{(1,2), (2,3), (3,2), (3,3), (4,3)\}$$

- a. Geben Sie die Relation R^{-1} an.
- b. Geben Sie die Relation $R \circ R$ an.
- c. Geben Sie die Relation $R \circ R \circ R$ an.
- d. Geben Sie die Relation $R^{-1} \circ R$ an.
- e. Geben Sie die Relation $R \circ R^{-1}$ an.
- f. Bestimmen Sie für jede der Relationen $R, R^{-1}, R \circ R, R \circ R^{-1}$ und $R^{-1} \circ R$, welche der folgenden Eigenschaften für sie zutreffen, tragen Sie die entsprechenden Wahrheitswerte in die Tabelle ein und begründen Sie Ihre Antworten:

Relation	reflexiv	irreflexiv	transitiv	symmetrisch	asymmetrisch	antisymmetrisch
R						
R^{-1}						
$R \circ R$						
$R \circ R \circ R$						
$R^{-1} \circ R$						
$R \circ R^{-1}$						

Aufgabe 8.5

Bestimmen Sie für die Relation $S\subseteq \{a,b,c,d,e\}^2$ mit

$$S = \{(a,a), (a,d), (b,e), (c,a), (d,a)\}$$

- die reflexive Hülle,
- die symmetrische Hülle,
- die transitive Hülle.
- die reflexiv-transitive Hülle.

Aufgabe 8.6

Zu jeder Menge M wird die Relation $R_M \subseteq 2^M \times 2^M$ auf der Potenzmenge der Menge M definiert durch $R_M = \{(X,Y) \mid |X| = |Y|\}.$

Für jedes $i \in \mathbb{N}$ ist die Menge $M_i \subseteq \mathbb{N}$ definiert durch $M_i = \{0, \dots, i\}$.

- a. Geben Sie für jedes $i \in \{0,1,2\}$ die Menge M_i und die Relation $R_{(M_i)}$ an.
- b. Zeigen Sie, dass die Relation $R_{(M_7)}$ für die Menge $M_7 = \{0, \dots, 7\}$ eine Äquivalenzrelation ist.
- c. In wieviele Äquivalenzklassen teilt die Relation $R_{(M_7)}$ die Menge $2^{(M_7)}$?
- d. Geben Sie zu jeder Äquivalenzklasse ein Element und die Mächtigkeit der Äquivalenzlasse an.
- e. In wieviele Äquivalenzklassen teilt die Relation $R_{(M_n)}$ die Menge $2^{(M_n)}$? Geben Sie aus jeder Äquivalenzklasse einen Repräsentanten an.

Aufgabe 8.7

Zeigen Sie, dass die Teilerrelation a|b mit $\forall a,b:(a|b\leftrightarrow \exists c\in M:ac=b)$

- auf der Menge N eine Halbordnung, aber keine totale Ordnung ist,
- auf der Menge Z keine Halbordnung ist.

Aufgabe 8.8

Überprüfen Sie jede der folgenden Relationen auf ihre Eigenschaften (reflexiv , irreflexiv , transitiv , symmetrisch , asymmetrisch , antisymmetrisch) und geben Sie an, ob die Relationen Quasiordnungen, Äquivalenzrelationen, Halbordnungen, lineare Ordnungen sind.

a.
$$R_1 \subseteq \emptyset^2$$
 mit $R_1 = \emptyset$

b.
$$R_2 \subseteq \{a, b, c\}^2 \text{ mit } R_2 = \{a, b, c\}^2$$

c.
$$R_3 \subseteq (\{a,b\}^*)^2$$
 mit $R_3 = \{(u,v) \in (\{a\}^*)^2 \mid u \sqsubseteq v\}$

d.
$$R_4 \subseteq (\{a\}^*)^2$$
 mit $R_4 = \{(u, v) \in (\{a\}^*)^2 \mid |u| = |v|\}$

e.
$$R_5 \subseteq \{0, \dots, 12\}^2$$
 mit $R_5 = \{(a, b) \in \{0, \dots, 12\}^2 \mid a|b\}$

f.
$$R_6 \subseteq (\{a,b\}^+)^2$$
 mit $R_6 = \{(u,v) \in (\{a,b\}^+)^2 \mid u_1 = v_1\}$

g.
$$R_7 \subseteq (\{a,b\}^*)^2$$
 mit $R_7 = \{(u,v) \in (\{a,b\}^*)^2 \mid |u| \leq |v|\}$

h.
$$R_8 \subseteq \{1, 2, 3, 4\}^2$$
 mit $R_8 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$

i.
$$R_9 \subseteq \{1, 2, 3, 4\}^2$$
 mit $R_9 = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (4, 4)\}$

j.
$$R_{10} \subseteq \{1, 2, 3, 4\}^2$$
 mit $R_{10} = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$

Tragen Sie als Lösung die entsprechenden Wahrheitwerte (0 oder 1) in die folgende Tabelle ein und begründen Sie Ihre Antworten.

Eigenschaft	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	R_{10}
reflexiv										
irreflexiv										
transitiv										
symmetrisch										
asymmetrisch										
antisymmetrisch										
Quasiordnung										
Äquivalenzrelation										
Halbordnung										
lineare Ordnung										

Aufgabe 8.9

Auf der Potenzmenge der Menge $M = \{0, 1, 2\}$ ist die zweistellige Relation $R \subseteq 2^M \times 2^M$ definiert durch $R = \{(X, Y) \mid X \cap Y = \emptyset\}$.

- a. Geben Sie eine umgangssprachliche Beschreibung der Relation R an.
- b. Geben Sie eine extensionale Darstellung der Relation R (durch Angabe aller ihrer Elemente) an
- c. Geben Sie eine umgangssprachliche Beschreibung und eine extensionale Darstellung für das Komplement \overline{R} der Relation R an.
- d. Welche der Eigenschaften reflexiv, irreflexiv, transitiv, symmetrisch, asymmetrisch, antisymmetrisch haben R und \overline{R} ?
- e. Gilt $I_{2^M} \subseteq R$? Gilt $I_{2^M} \subseteq \overline{R}$?