6. Übung im Modul "Modellierung"

Wintersemester 2024/25

zu lösen bis 20. November 2024

Aufgabe 6.1

Welche der folgenden Aussagen gelten für die Menge $M=2^{\{0,1\}}\cup\{0\}$? Begründen Sie Ihre Antworten.

a. $\emptyset \in M$ g. $\{0\} \in M$ h. $\{0\} \subseteq M$ c. $\{\emptyset\} \in M$ i. $\{\{0\}\} \subseteq M$ j. $\{\{0,1\}\} \in M$ e. $0 \in M$ k. $\{0,\{1\}\} \subseteq M$ l. $\{\{0\},\{1\}\} \subseteq M$

Aufgabe 6.2

Formulieren Sie die folgenden Mengen umgangssprachlich:

 $M_{1} = \{3n \mid (n \in \mathbb{N}) \land (n < 5)\}$ $M_{2} = \{p \in \mathbb{N} \mid (3p < 20)\}$ $M_{3} = \{(i, j) \mid (i \in \mathbb{R}) \land (j \in \mathbb{R}) \land (i - j \ge 0)\}$ $M_{4} = \{(x, y) \mid (x \in \mathbb{N}) \land (y \in \mathbb{N}) \land (y = x^{2})\}$ $M_{5} = M_{3} \cap M_{4}$

und geben Sie auch die extensionalen Darstellungen aller endlichen Mengen M_i an.

Aufgabe 6.3

- a. Geben Sie zu jeder der folgenden informal beschriebenen Mengen formale intensionale Darstellungen an:
 - M_1 : Menge aller Quadratzahlen natürlicher Zahlen, die kleiner als 50 sind,
 - M_2 : Menge aller ungeraden Zahlen zwischen 10 und 20,
 - M_3 : Menge aller dreistelligen Dezimaldarstellungen natürlicher Zahlen ohne führende Nullen,
 - M_4 : Menge aller vollständigen 3-Gänge-Menüs, die sich zusammenstellen lassen aus
 - Vorspeisen: Suppe
 - Hauptgängen: Fisch, Huhn, Tofu
 - Dessert: Eis, Pudding
 - M_5 : Menge aller möglichen Getränke, die sich aus (je höchstens einem Anteil) Anannassaft, Baileys, Cola, Orangensaft, Rum und Wodka mixen lassen.
- b. Geben Sie für jede endliche Menge die Mächtigkeit $|M_i|$ an.
- c. Geben Sie für jede dieser Mengen mit $|M_i| \leq 10$, auch die extensionale Darstellung und für $|M_i| > 10$ drei Elemente der Menge an.

Aufgabe 6.4

Zeigen Sie mit Hilfe der Definitionen der Mengenoperationen, dass die Gleichungen

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \tag{1}$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C) \tag{2}$$

- a. für die Mengen $A = \{a, b\}, B = \{a, c, d\}$ und $C = \{b, c\}$ gelten,
- b. für alle Mengen A, B und C gelten.

Aufgabe 6.5

Bestimmen Sie für die gegebenen Mengen $A = \{a, b\}, B = \{a, c, d\}$ und $C = \{1, 3, 4\}$:

M_1	=	$\{x \in C \mid x > 2\}$	M_7	=	2^B
M_2	=	$A \cup B$	M_8	=	$2^{\left(2^A ight)}$
M_3	=	$A \cap B$	M_9	=	$M_5 \cap M_7$
M_4	=	$A \times \{\alpha\}$	M_{10}	=	$\left(2^B \setminus 2^A\right) \cup B$
M_5	=	$A \times B$	M_{11}	=	$A\dot{\cup}B$
M_6	=	$M_1 \times A$	M_{12}	=	$A\dot{\cup}2^A$

und geben Sie jeweils $|M_i|$ an.

Aufgabe 6.6

Zeigen Sie, dass die Aussage $M \subseteq N \rightarrow 2^M \subseteq 2^N$

- a. für die Mengen $M = \{a, c\}$ und $N = \{a, b, c\}$ gilt,
- b. für alle Mengen M und N gilt.

Dazu benötigen Sie die Definitionen der Potenzmenge und der Beziehung ⊆.

Aufgabe 6.7

Welche der folgenden Mengenfamilien sind disjunkte Zerlegungen der Vereinigung M aller Mengen der Familie?

Geben Sie auch die Menge M an. Begründen Sie Ihre Antworten.

- a. $\{K_{\diamondsuit}, K_{\heartsuit}, K_{\spadesuit}, K_{\clubsuit}\}$, wobei für jede Farbe $f \in \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$ die Menge K_f alle Skatkarten der Farbe f enthält,
- b. $\{A_0, A_1, A_2 ...\}$, wobei für jedes $n \in \mathbb{N}$: $A_n =$ Menge aller Fahrzeuge mit erreichbarer Höchstgeschwindigkeit von mindestens n km/h,
- c. $\{M_0, M_1, M_2, \ldots\}$, wobei für jedes $i \in \mathbb{N}$: $M_i = \text{Menge aller Personen}$, die genau i Paar Schuhe besitzen,
- d. $\{4N, 4N + 1, 4N + 2, 4N + 3\}$
- e. $\{[-i, i) \subseteq \mathbb{R} \mid i \in \mathbb{N}\}$
- f. $\{\{(x,y) \in \mathbb{R}^2 \mid x+y \le 0\}, \{(x,y) \in \mathbb{R}^2 \mid x+y \ge 1\}\}$