2. Übung im Modul "Modellierung"

Wintersemester 2024/25

zu lösen bis 23. Oktober 2024

Aufgabe 2.1

Welche der folgenden Zeichenketten sind aussagenlogische Formeln?

Begründen Sie Ihre Antworten.

Geben Sie zu jeder Formel auch den Formelbaum , die Menge aller vorkommenden Variablen, die Anzahl aller Variablenvorkommen und für alle Formeln mit höchstens drei Variablenvorkommen alle Teilformeln an:

- 1. $\neg \neg p$
- 2. $\neg p \lor \land q$
- 3. $p \to (\neg p \lor ((\neg \neg q) \to (p \land q)))$
- 4. $p \to (\neg p \lor (\neg p \neg))$
- 5. $(p \to q) \land (\neg r \to (q \lor (\neg p \lor r)))$
- 6. $p \to (((q \land \neg r) \to q) \lor (\neg p \lor r))$
- 7. $q \neg \land r \rightarrow r$
- 8. $(\neg(\neg p \land \neg q) \lor r) \to (p \land \neg(\neg q \lor \neg r))$
- 9. $\neg(\neg t \land \neg p) \leftrightarrow (f \rightarrow q)$

Aufgabe 2.2

Für jede aussagenlogische Formel $\varphi \in \mathsf{AL}(P)$ ist ihre Größe $\mathsf{size}(\varphi)$ induktiv definiert durch:

```
IA: falls \varphi = p (Atom), dann size(\varphi) = 1
```

```
IS: - nullstellige Junktoren (t, f):

für \varphi = t oder \varphi = f gilt \operatorname{size}(\varphi) = 1

- einstellige Junktoren (¬):

für \varphi = \neg \varphi_1 gilt \operatorname{size}(\varphi) = 1 + \operatorname{size}(\varphi_1)

- zweistellige Junktoren (* \in \{ \lor, \land, \to, \leftrightarrow \} \}):
```

für $\varphi = \varphi_1 * \varphi_2$ gilt $\operatorname{size}(\varphi) = 1 + \operatorname{size}(\varphi_1) + \operatorname{size}(\varphi_2)$

Bestimmen Sie für jede aussagenlogische Formel aus der vorigen Aufgabe ihre Größe mit dieser Definition.

Aufgabe 2.3

Geben Sie zur jeder der beiden Formeln

$$\varphi = \neg(\neg q \lor r)$$

$$\psi = p \to (q \land \neg r)$$

an:

- a. die Wahrheitswerttabelle der Formel,
- b. die Modellmenge der Formel und
- c. die Modellmenge der Negation der Formel.