12. Übung im Modul "Modellierung"

Wintersemester 2024/25

zu lösen bis 15. Januar 2025

Aufgabe 12.1

Gegeben ist die Signatur $\Sigma_F = \{(c,0), (a,1), (b,1), (f,2)\}.$ Bestimmen Sie die Werte der folgenden Σ_F -Grundterme

```
\begin{array}{lcl} r & = & a(b(b(c))) \\ s & = & f(a(b(b(c))), b(a(a(c)))) \\ t & = & f(c, f(a(c), f(f(a(c), b(c)), c))) \\ u & = & f(f(b(a(c)), c), f(a(c), f(b(c), a(c)))) \end{array}
```

in jeder der Σ_F -Strukturen

• $\mathcal{A} = (A, [\cdot]_{\mathcal{A}})$ mit

$$A = \{0, 1\}$$

$$[\![c]\!]_{\mathcal{A}} = 0$$

$$\forall d \in A : [\![a]\!]_{\mathcal{A}}(d) = 1 - d$$

$$\forall d \in A : [\![b]\!]_{\mathcal{A}}(d) = d$$

$$\forall d, e \in A : [\![f]\!]_{\mathcal{A}}(d, e) = |d - e| \text{ (Betrag)}$$

• $\mathcal{B} = (B, [\![\cdot]\!]_{\mathcal{B}})$ mit

```
B = \{a,b\}^* \quad \text{(Menge aller Wörter über dem Alphabet } \{a,b\}) \llbracket c \rrbracket_{\mathcal{B}} = \varepsilon \forall u \in B : \llbracket a \rrbracket_{\mathcal{B}}(u) = u \circ a \quad (a \text{ an das Wort } u \text{ anhängen}) \forall u \in B : \llbracket b \rrbracket_{\mathcal{B}}(u) = u \circ b \forall u,v \in B : \llbracket f \rrbracket_{\mathcal{B}}(u,v) = u \circ v
```

Aufgabe 12.2

- a. Warum gilt für alle Signaturen Σ_F ohne Konstantensymbole $\mathsf{Term}\,(\Sigma_F,\emptyset)=\emptyset$?
- b. Zeigen Sie, dass für jede Σ_F -Struktur \mathcal{A} die Relation $\equiv_{\mathcal{A}}$ eine Äquivalenzrelation auf der Menge $\mathsf{Term}(\Sigma_F,\emptyset)$ ist.

Aufgabe 12.3

Geben Sie für die Signatur $\Sigma = (\Sigma_F, \emptyset)$ mit $\Sigma_F = \{(a,0), (b,0), (c,1), (d,2), (e,2)\}$ und die Σ_F -Grundterme

$$s = c(d(a,b))$$
 $t = e(c(a), c(c(a)))$

zwei Σ -Strukturen \mathcal{A} und \mathcal{B} an, welche die beiden folgenden Bedingungen erfüllen:

- 1. $[s]_{\mathcal{A}} = [t]_{\mathcal{A}}$ und
- 2. $[s]_{\mathcal{B}} \neq [t]_{\mathcal{B}}$

Zeichen Sie die Termbäume der Terme s und t und weisen Sie nach, dass Ihre Strukturen beide Bedingungen 1. und 2. erfüllen.

Aufgabe 12.4

Geben Sie zur Signatur $\Sigma = (\Sigma_R, \Sigma_F)$ mit $\Sigma_R = \{(R, 2)\}$ und $\Sigma_F = \{(f, 1), (g, 2)\}$ zwei Σ -Strukturen $S_1 = (S_1, \llbracket \cdot \rrbracket_{S_1})$ und $S_2 = (S_2, \llbracket \cdot \rrbracket_{S_2})$ mit Trägermengen verschiedener Mächtigkeit an, in denen für alle Elemente x, y, z der jeweiligen Trägermengen **alle** folgenden Bedingungen erfüllt sind:

- a. $\forall x \in S_i : [\![f]\!]_{\mathcal{S}_i}(x) \neq x \text{ und } \forall x \in S_i : [\![f]\!]_{\mathcal{S}_i}([\![f]\!]_{\mathcal{S}_i}(x)) = x$
- b. $\forall (x,y) \in S_i^2 : [g]_{S_i}(x,y) = [g]_{S_i}(y,x)$
- c. $[\![R]\!]_{\mathcal{S}_i}$ ist eine Halbordnung, aber keine lineare Ordnung.
- $\text{d. F\"{u}r alle } (x,y) \in [\![R]\!]_{\mathcal{S}_i} \text{ gilt } ([\![f]\!]_{\mathcal{S}_i}(y), [\![f]\!]_{\mathcal{S}_i}(x)) \in [\![R]\!]_{\mathcal{S}_i} \text{ und } ([\![g]\!]_{\mathcal{S}_i}(x,z), [\![g]\!]_{\mathcal{S}_i}(y,z)) \in [\![R]\!]_{\mathcal{S}_i}.$

Weisen Sie nach, dass beide von Ihnen angegebenen Strukturen alle Bedingungen erfüllen.

Aufgabe 12.5

Gegeben sind die Signatur Σ_F und die Struktur \mathcal{A} aus der ersten Aufgabe dieser Serie, die Variablenmenge $\mathbb{X} = \{x, y\}$, die Terme s = f(a(y), f(x, c)) und t = f(f(a(x), b(y)), x) und

```
die Terme s = f(a(y), f(x, c)) und t = f(f(a(x), b(y)), x) und die Belegung \alpha : \{x, y\} \to A mit \alpha(x) = 0 und \alpha(y) = 1.
```

- a. Bestimmen Sie die Werte der Terme s und t in der Interpretation (\mathcal{A}, α) .
- b. Finden Sie eine Belegung $\beta: \{x,y\} \to A$ mit den folgenden Eigenschaften:
 - (a) $[s]_{(A,\alpha)} = [s]_{(A,\beta)}$
 - (b) $[t]_{(\mathcal{A},\alpha)} \neq [t]_{(\mathcal{A},\beta)}$

Weisen Sie nach, dass die von Ihnen angegebene Belegung diese beiden Eigenschaften erfüllt.

Aufgabe 12.6

- a. Zeigen Sie, dass die Struktur $(2^{(A^*)}, \cup, \circ)$ ein Halbring ist.
- b. Hat dieser Halbring ein 0-Element? Hat dieser Halbring ein 1-Element? Begründen Sie. Falls ja, geben Sie diese Elemente an.